1
|
Stransky N, Egloff AM, Tward AD, Kostic
AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C,
McKenna A, et al: The mutational landscape of head and neck
squamous cell carcinoma. Science. 333:1157–1160. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Krol J, Loedige I and Filipowicz W: The
widespread regulation of microRNA biogenesis, function and decay.
Nat Rev Genet. 11:597–610. 2010.PubMed/NCBI
|
3
|
Farazi TA, Hoell JI, Morozov P and Tuschl
T: MicroRNAs in Human Cancer. MicroRNA Cancer Regulation, Advanced
Concepts, Bioinformatics and Systems Biology Tools. Schmitz U,
Wolkenhauer O and Vera J: Springer; pp. 1–20. 2013
|
4
|
Kinoshita T, Hanazawa T, Nohata N, Kikkawa
N, Enokida H, Yoshino H, Yamasaki T, Hidaka H, Nakagawa M, Okamoto
Y, et al: Tumor suppressive microRNA-218 inhibits cancer cell
migration and invasion through targeting laminin-332 in head and
neck squamous cell carcinoma. Oncotarget. 3:1386–1400. 2012.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Jimenez L, Sharma VP, Lim J, Angeletti R,
Condeelis J, Harris T, Prystowsky MB, Childs G and Segall JE:
MicroRNA-375 impairs head and neck squamous cell carcinoma invasion
by suppressing invadopodia activity. Cancer Res. 74(1452): 2014
View Article : Google Scholar
|
6
|
Jimenez L, Harris T, Kawachi N, Belbin T,
Schlecht N, Lim J, Angeletti R, Prystowsky MB, Childs G and Segall
J: MicroRNA-375 regulates tumor invasion and metastasis phenotypes
and is associated with poor outcome in head and neck squamous cell
carcinoma. Cancer Res. 73(4939): 2013 View Article : Google Scholar
|
7
|
Langevin SM, Stone RA, Bunker CH,
Lyons-Weiler MA, LaFramboise WA, Kelly L, Seethala RR, Grandis JR,
Sobol RW and Taioli E: MicroRNA-137 promoter methylation is
associated with poorer overall survival in patients with squamous
cell carcinoma of the head and neck. Cancer. 117:1454–1462. 2011.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Howard JD, Cheng H, Ratner E, Fertig EJ,
Perez J, Quon H, Considine M, Ochs M, Weidhaas J and Chung CH:
MicroRNA profiling reveals miR-205 upregulation is associated with
head and neck squamous cell carcinoma and modulates E2F1 signaling.
Cancer Res. 73(Suppl 8): 3100. 2013. View Article : Google Scholar
|
9
|
Therneau TM: Modeling survival data.
Extending the Cox Model. Springer; 2000, View Article : Google Scholar
|
10
|
Timsit JF, Alberti C and Chevret S: Cox
proportional hazards regression analysis. Rev Mal Respir.
22:1058–1064. 2005.In French. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ferguson N, Datta S and Brock G: msSurv,
an R package for nonparametric estimation of multistate models. J
Stat Software. 50:1–24. 2012. View Article : Google Scholar
|
12
|
Piriyapongsa J, Bootchai C, Ngamphiw C and
Tongsima S: microPIR: An integrated database of microRNA target
sites within human promoter sequences. PLoS One. 7:e338882012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Dweep H, Sticht C, Pandey P and Gretz N:
miRWalk - database: Prediction of possible miRNA binding sites by
'walking' the genes of three genomes. J Biomed Inform. 44:839–847.
2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Enright AJ, John B, Gaul U, Tuschl T,
Sander C and Marks DS: MicroRNA targets in Drosophila. Genome Biol.
5:R1. 2003. View Article : Google Scholar
|
15
|
Wang X and El Naqa IM: Prediction of both
conserved and nonconserved microRNA targets in animals.
Bioinformatics. 24:325–332. 2008. View Article : Google Scholar
|
16
|
Krek A, Grün D, Poy MN, Wolf R, Rosenberg
L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M,
et al: Combinatorial microRNA target predictions. Nat Genet.
37:495–500. 2005. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Thomas M, Lieberman J and Lal A:
Desperately seeking microRNA targets. Nat Struct Mol Biol.
17:1169–1174. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lewis BP, Shih IH, Jones-Rhoades MW,
Bartel DP and Burge CB: Prediction of mammalian microRNA targets.
Cell. 115:787–798. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Franceschini A, Szklarczyk D, Frankild S,
Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering
C, et al: STRING v9.1: Protein-protein interaction networks, with
increased coverage and integration. Nucleic Acids Res.
41:D808–D815. 2013. View Article : Google Scholar :
|
20
|
Smoot ME, Ono K, Ruscheinski J, Wang PL
and Ideker T: Cytoscape 2.8: New features for data integration and
network visualization. Bioinformatics. 27:431–432. 2011. View Article : Google Scholar :
|
21
|
Huang W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar
|
22
|
Huang ZX, Tian HY, Hu ZF, Zhou YB, Zhao J
and Yao KT: GenCLiP: A software program for clustering gene lists
by literature profiling and constructing gene co-occurrence
networks related to custom keywords. BMC Bioinformatics. 9:3082008.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Ting JH: Novel roles of cell cycle
regulator E2F1 in the CNS: Implications for synaptic damage in
HIV-associated neurocognitive disorders. University of
Pennsylvania; Scholarly Commons: Publicly Accessible Penn
Dissertations. Paper 1471. 2014, http://repository.upenn.edu/edissertations/1471.
|
24
|
Liu TJ, Wang M, Breau RL, Henderson Y,
El-Naggar AK, Steck KD, Sicard MW and Clayman GL: Apoptosis
induction by E2F-1 via adenoviral-mediated gene transfer results in
growth suppression of head and neck squamous cell carcinoma cell
lines. Cancer Gene Ther. 6:163–171. 1999. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lu M, Liu Z, Yu H, Wang LE, Li G, Sturgis
EM, Johnson DG and Wei Q: Combined effects of E2F1 and E2F2
polymorphisms on risk and early onset of squamous cell carcinoma of
the head and neck. Mol Carcinog. 51(Suppl 1): E132–E141. 2012.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Murata M, Yoshida K and Matsuzaki K: Early
chronic inflammation and subsequent somatic mutations shift
phospho-Smad3 signaling from tumor-suppression to
fibro-carcinogenesis in human chronic liver diseases.
Hepatocellular Carcinoma-Future Outlook. Kaseb A: InTech; 2013,
View Article : Google Scholar : Available from:
http://www.intechopen.com/books/hepatocellular-carcinoma-future-outlook/early-chronic-inflammation-and-subsequent-somatic-mutations-shift-phospho-smad3-signaling-from-tumor.
|
27
|
Kowalik TF: Smad about E2F. TGFbeta
repression of c-Myc via a Smad3/E2F/p107 complex. Mol Cell. 10:7–8.
2002. View Article : Google Scholar : PubMed/NCBI
|
28
|
Xie W, Aisner S, Baredes S, Sreepada G,
Shah R and Reiss M: Alterations of Smad expression and activation
in defining 2 subtypes of human head and neck squamous cell
carcinoma. Head Neck. 35:76–85. 2013. View Article : Google Scholar
|
29
|
Derynck R and Zhang YE: Smad-dependent and
Smad-independent pathways in TGF-β family signalling. Nature.
425:577–584. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Massagué J and Wotton D: Transcriptional
control by the TGF-β/Smad signaling system. EMBO J. 19:1745–1754.
2000. View Article : Google Scholar
|
31
|
Heldin CH, Miyazono K and ten Dijke P:
TGF-β signalling from cell membrane to nucleus through SMAD
proteins. Nature. 390:465–471. 1997. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Park Y, Kim W, Lee J, Park J, Cho JK, Pang
K, Lee J, Kim D, Park SW, Yang KM, et al: Cytoplasmic DRAK1
overexpressed in head and neck cancers inhibits TGF-β1 tumor
suppressor activity by binding to Smad3 to interrupt its complex
formation with Smad4. Oncogene. 34:5037–5045. 2015. View Article : Google Scholar
|
33
|
Pelletier C and Weidhaas JB: MicroRNA
binding site polymorphisms as biomarkers of cancer risk. Expert Rev
Mol Diagn. 10:817–829. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wu X, Ajani JA, Gu J, Chang DW, Tan W,
Hildebrandt MA, Huang M, Wang KK and Hawk E: MicroRNA expression
signatures during malignant progression from Barrett's esophagus to
esophageal adenocarcinoma. Cancer Prev Res. 6:196–205. 2013.
View Article : Google Scholar
|
35
|
Blackwood EM and Eisenman RN: Max: A
helix-loop-helix zipper protein that forms a sequence-specific
DNA-binding complex with Myc. Science. 251:1211–1217. 1991.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Field JK, Spandidos DA, Stell PM, Vaughan
ED, Evan GI and Moore JP: Elevated expression of the c-myc
oncoprotein correlates with poor prognosis in head and neck
squamous cell carcinoma. Oncogene. 4:1463–1468. 1989.PubMed/NCBI
|
37
|
Banda AD, Cortes MB, Kamarajan P,
Rajendiran T, Chinnaiyan AM and Kapila YL: Glutamic acid and
glutaminolysis mark aggressive tumorigenesis in head and neck
squamous cell carcinoma. Cancer Res. 75(Suppl 15): 11922015.
View Article : Google Scholar
|
38
|
Kuo SZ, Blair KJ, Rahimy E, Kiang A,
Abhold E, Fan JB, Wang-Rodriguez J, Altuna X and Ongkeko WM:
Salinomycin induces cell death and differentiation in head and neck
squamous cell carcinoma stem cells despite activation of
epithelial-mesenchymal transition and Akt. BMC Cancer. 12:5562012.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Ulivi P, Foschi G, Mengozzi M, Scarpi E,
Silvestrini R, Amadori D and Zoli W: Peripheral blood miR-328
expression as a potential biomarker for the early diagnosis of
NSCLC. Int J Mol Sci. 14:10332–10342. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Woods KA, Camacho-Hübner C, Savage MO and
Clark AJ: Intrauterine growth retardation and postnatal growth
failure associated with deletion of the insulin-like growth factor
I gene. N Engl J Med. 335:1363–1367. 1996. View Article : Google Scholar : PubMed/NCBI
|
41
|
Rosenzweig SA and Holmes CO: Insulin-like
growth factor-1 receptors in head and neck cancer. Molecular
Determinants of Head and Neck Cancer. Springer. 113–130. 2014.
View Article : Google Scholar
|
42
|
Slomiany MG, Black LA, Kibbey MM, Day TA
and Rosenzweig SA: IGF-1 induced vascular endothelial growth factor
secretion in head and neck squamous cell carcinoma. Biochem Biophys
Res Commun. 342:851–858. 2006. View Article : Google Scholar : PubMed/NCBI
|
43
|
Jameson MJ, Beckler AD, Taniguchi LE,
Allak A, Vanwagner LB, Lee NG, Thomsen WC, Hubbard MA and Thomas
CY: Activation of the insulin-like growth factor-1 receptor induces
resistance to epidermal growth factor receptor antagonism in head
and neck squamous carcinoma cells. Mol Cancer Ther. 10:2124–2134.
2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Plieskatt JL, Rinaldi G, Feng Y, Levine
PH, Easley S, Martinez E, Hashmi S, Sadeghi N, Brindley PJ, Bethony
JM, et al: Methods and matrices: Approaches to identifying miRNAs
for nasopharyngeal carcinoma. J Transl Med. 12:32014. View Article : Google Scholar : PubMed/NCBI
|