The role of JAM-B in cancer and cancer metastasis (Review)
- Authors:
- Huishan Zhao
- Hefen Yu
- Tracey A. Martin
- Xu Teng
- Wen G. Jiang
-
Affiliations: Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University, Beijing 100069, P.R. China, Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK, Cancer Institute of Capital Medical University, Beijing 100069, P.R. China - Published online on: April 27, 2016 https://doi.org/10.3892/or.2016.4773
- Pages: 3-9
-
Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Runkle EA and Mu D: Tight junction proteins: From barrier to tumorigenesis. Cancer Lett. 337:41–48. 2013. View Article : Google Scholar : PubMed/NCBI | |
Martìn-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, et al: Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol. 142:117–127. 1998. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Nusrat A, Schnell FJ, Reaves TA, Walsh S, Pochet M and Parkos CA: Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci. 113:2363–2374. 2000.PubMed/NCBI | |
Mandell KJ and Parkos CA: The JAM family of proteins. Adv Drug Deliv Rev. 57:857–867. 2005. View Article : Google Scholar : PubMed/NCBI | |
Martin TA, Watkins G, Mansel RE and Jiang WG: Loss of tight junction plaque molecules in breast cancer tissues is associated with a poor prognosis in patients with breast cancer. Eur J Cancer. 40:2717–2725. 2004. View Article : Google Scholar : PubMed/NCBI | |
Martin TA, Mansel RE and Jiang WG: Antagonistic effect of NK4 on HGF/SF induced changes in the transendothelial resistance (TER) and paracellular permeability of human vascular endothelial cells. J Cell Physiol. 192:268–275. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hoevel T, Macek R, Mundigl O, Swisshelm K and Kubbies M: Expression and targeting of the tight junction protein CLDN1 in CLDN1-negative human breast tumor cells. J Cell Physiol. 191:60–68. 2002. View Article : Google Scholar : PubMed/NCBI | |
Itoh M, Sasaki H, Furuse M, Ozaki H, Kita T and Tsukita S: Junctional adhesion molecule (JAM) binds to PAR-3: A possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol. 154:491–497. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tajima M, Hirabayashi S, Yao I, Shirasawa M, Osuga J, Ishibashi S, Fujita T and Hata Y: Roles of immunoglobulin-like loops of junctional cell adhesion molecule 4; involvement in the subcellular localization and the cell adhesion. Genes Cells. 8:759–768. 2003. View Article : Google Scholar : PubMed/NCBI | |
Liang TW, DeMarco RA, Mrsny RJ, Gurney A, Gray A, Hooley J, Aaron HL, Huang A, Klassen T, Tumas DB, et al: Characterization of huJAM: Evidence for involvement in cell-cell contact and tight junction regulation. Am J Physiol Cell Physiol. 279:C1733–C1743. 2000.PubMed/NCBI | |
Liang TW, Chiu HH, Gurney A, Sidle A, Tumas DB, Schow P, Foster J, Klassen T, Dennis K, DeMarco RA, et al: Vascular endothelial-junctional adhesion molecule (VE-JAM)/JAM 2 interacts with T, NK, and dendritic cells through JAM 3. J Immunol. 168:1618–1626. 2002. View Article : Google Scholar : PubMed/NCBI | |
Martin TA and Jiang WG: Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta. 1788:872–891. 2009. View Article : Google Scholar | |
Bazzoni G: The JAM family of junctional adhesion molecules. Curr Opin Cell Biol. 15:525–530. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cunningham SA, Arrate MP, Rodriguez JM, Bjercke RJ, Vanderslice P, Morris AP and Brock TA: A novel protein with homology to the junctional adhesion molecule. Characterization of leukocyte interactions. J Biol Chem. 275:34750–34756. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hirabayashi S, Tajima M, Yao I, Nishimura W, Mori H and Hata Y: JAM4, a junctional cell adhesion molecule interacting with a tight junction protein, MAGI-1. Mol Cell Biol. 23:4267–4282. 2003. View Article : Google Scholar : PubMed/NCBI | |
Shin K, Fogg VC and Margolis B: Tight junctions and cell polarity. Annu Rev Cell Dev Biol. 22:207–235. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ebnet K, Suzuki A, Ohno S and Vestweber D: Junctional adhesion molecules (JAMs): More molecules with dual functions? J Cell Sci. 117:19–29. 2004. View Article : Google Scholar | |
Aurrand-Lions M, Johnson-Leger C, Wong C, Du Pasquier L and Imhof BA: Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members. Blood. 98:3699–3707. 2001. View Article : Google Scholar : PubMed/NCBI | |
Garrido-Urbani S, Bradfield PF and Imhof BA: Tight junction dynamics: The role of junctional adhesion molecules (JAMs). Cell Tissue Res. 355:701–715. 2014. View Article : Google Scholar : PubMed/NCBI | |
Prota AE, Campbell JA, Schelling P, Forrest JC, Watson MJ, Peters TR, Aurrand-Lions M, Imhof BA, Dermody TS and Stehle T: Crystal structure of human junctional adhesion molecule 1: Implications for reovirus binding. Proc Natl Acad Sci USA. 100:5366–5371. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kostrewa D, Brockhaus M, D'Arcy A, Dale GE, Nelboeck P, Schmid G, Mueller F, Bazzoni G, Dejana E, Bartfai T, et al: X-ray structure of junctional adhesion molecule: Structural basis for homophilic adhesion via a novel dimerization motif. EMBO J. 20:4391–4398. 2001. View Article : Google Scholar : PubMed/NCBI | |
Naik UP, Ehrlich YH and Kornecki E: Mechanisms of platelet activation by a stimulatory antibody: Cross-linking of a novel platelet receptor for monoclonal antibody F11 with the Fc gamma RII receptor. Biochem J. 310:155–162. 1995. View Article : Google Scholar : PubMed/NCBI | |
Malergue F, Galland F, Martin F, Mansuelle P, Aurrand-Lions M and Naquet P: A novel immunoglobulin superfamily junctional molecule expressed by antigen presenting cells, endothelial cells and platelets. Mol Immunol. 35:1111–1119. 1998. View Article : Google Scholar | |
Williams LA, Martin-Padura I, Dejana E, Hogg N and Simmons DL: Identification and characterisation of human junctional adhesion molecule (JAM). Mol Immunol. 36:1175–1188. 1999. View Article : Google Scholar | |
Palmeri D, van Zante A, Huang CC, Hemmerich S and Rosen SD: Vascular endothelial junction-associated molecule, a novel member of the immunoglobulin superfamily, is localized to intercellular boundaries of endothelial cells. J Biol Chem. 275:19139–19145. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi I, Kobayashi-Sun J, Kim AD, Pouget C, Fujita N, Suda T and Traver D: JAM1a-JAM2a interactions regulate haematopoietic stem cell fate through Notch signalling. Nature. 512:319–323. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bazzoni G and Dejana E: Endothelial cell-to-cell junctions: Molecular organization and role in vascular homeostasis. Physiol Rev. 84:869–901. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wegmann F, Ebnet K, Du Pasquier L, Vestweber D and Butz S: Endothelial adhesion molecule ESAM binds directly to the multidomain adaptor MAGI-1 and recruits it to cell contacts. Exp Cell Res. 300:121–133. 2004. View Article : Google Scholar : PubMed/NCBI | |
Naik MU and Naik UP: Junctional adhesion molecule-A-induced endothelial cell migration on vitronectin is integrin alpha v beta 3 specific. J Cell Sci. 119:490–499. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mirza M, Raschperger E, Philipson L, Pettersson RF and Sollerbrant K: The cell surface protein coxsackie- and adenovirus receptor (CAR) directly associates with the Ligand-of-Numb Protein-X2 (LNX2). Exp Cell Res. 309:110–120. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sobocka MB, Sobocki T, Babinska A, Hartwig JH, Li M, Ehrlich YH and Kornecki E: Signaling pathways of the F11 receptor (F11R; a.k.a. JAM-1, JAM-A) in human platelets: F11R dimerization, phosphorylation and complex formation with the integrin GPIIIa. J Recept Signal Transduct Res. 24:85–105. 2004. View Article : Google Scholar : PubMed/NCBI | |
Reymond N, Garrido-urbani S, Borg JP, Dubreuil P and Lopez M: PICK-1: A scaffold protein that interacts with Nectins and JAMs at cell junctions. FEBS Lett. 579:2243–2249. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kansaku A, Hirabayashi S, Mori H, Fujiwara N, Kawata A, Ikeda M, Rokukawa C, Kurihara H and Hata Y: Ligand-of-Numb protein X is an endocytic scaffold for junctional adhesion molecule 4. Oncogene. 25:5071–5084. 2006.PubMed/NCBI | |
Butcher EC and Picker LJ: Lymphocyte homing and homeostasis. Science. 272:60–66. 1996. View Article : Google Scholar : PubMed/NCBI | |
Santoso S, Sachs UJH, Kroll H, Linder M, Ruf A, Preissner KT and Chavakis T: The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J Exp Med. 196:679–691. 2002. View Article : Google Scholar : PubMed/NCBI | |
Moog-Lutz C, Cavé-Riant F, Guibal FC, Breau MA, Di Gioia Y, Couraud PO, Cayre YE, Bourdoulous S and Lutz PG: JAML, a novel protein with characteristics of a junctional adhesion molecule, is induced during differentiation of myeloid leukemia cells. Blood. 102:3371–3378. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cunningham SA, Rodriguez JM, Arrate MP, Tran TM and Brock TA: JAM2 interacts with alpha4beta1. Facilitation by JAM3. J Biol Chem. 277:27589–27592. 2002. View Article : Google Scholar : PubMed/NCBI | |
Arrate MP, Rodriguez JM, Tran TM, Brock TA and Cunningham SA: Cloning of human junctional adhesion molecule 3 (JAM3) and its identification as the JAM2 counter-receptor. J Biol Chem. 276:45826–45832. 2001. View Article : Google Scholar : PubMed/NCBI | |
Johnson-Léger CA, Aurrand-Lions M, Beltraminelli N, Fasel N and Imhof BA: Junctional adhesion molecule-2 (JAM-2) promotes lymphocyte transendothelial migration. Blood. 100:2479–2486. 2002. View Article : Google Scholar : PubMed/NCBI | |
Langer HF, Daub K, Braun G, Schönberger T, May AE, Schaller M, Stein GM, Stellos K, Bueltmann A, Siegel-Axel D, et al: Platelets recruit human dendritic cells via Mac-1/JAM-C interaction and modulate dendritic cell function in vitro. Arterioscler Thromb Vasc Biol. 27:1463–1470. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ludwig RJ, Hardt K, Hatting M, Bistrian R, Diehl S, Radeke HH, Podda M, Schön MP, Kaufmann R, Henschler R, et al: Junctional adhesion molecule (JAM)-B supports lymphocyte rolling and adhesion through interaction with alpha4beta1 integrin. Immunol. 128:196–205. 1990. View Article : Google Scholar | |
Keiper T, Al-Fakhri N, Chavakis E, Athanasopoulos AN, Isermann B, Herzog S, Saffrich R, Hersemeyer K, Bohle RM, Haendeler J, et al: The role of junctional adhesion molecule-C (JAM-C) in oxidized LDL-mediated leukocyte recruitment. FASEB J. 19:2078–2080. 2005.PubMed/NCBI | |
Aurrand-Lions M, Lamagna C, Dangerfield JP, Wang S, Herrera P, Nourshargh S and Imhof BA: Junctional adhesion molecule-C regulates the early influx of leukocytes into tissues during inflammation. J Immunol. 174:6406–6415. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lamagna C, Meda P, Mandicourt G, Brown J, Gilbert RJ, Jones EY, Kiefer F, Ruga P, Imhof BA and Aurrand-Lions M: Dual interaction of JAM-C with JAM-B and alpha(M)beta2 integrin: Function in junctional complexes and leukocyte adhesion. Mol Biol Cell. 16:4992–5003. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gliki G, Ebnet K, Aurrand-Lions M, Imhof BA and Adams RH: Spermatid differentiation requires the assembly of a cell polarity complex downstream of junctional adhesion molecule-C. Nature. 431:320–324. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lamagna C, Hodivala-Dilke KM, Imhof BA and Aurrand-Lions M: Antibody against junctional adhesion molecule-C inhibits angiogenesis and tumor growth. Cancer Res. 65:5703–5710. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bradfield P, Scheiermann C, Nourshargh S, Ody C, Luscinskas F, Rainger G, et al: JAM-C, a turnstile for monocyte transendothelial migration in inflammation. Swiss Med Wkly. 137:12s2007. | |
Vonlaufen A, Aurrand-Lions M, Pastor CM, Lamagna C, Hadengue A, Imhof BA and Frossard JL: The role of junctional adhesion molecule C (JAM-C) in acute pancreatitis. J Pathol. 209:540–548. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ludwig RJ, Zollner TM, Santoso S, Hardt K, Gille J, Baatz H, Johann PS, Pfeffer J, Radeke HH, Schön MP, et al: Junctional adhesion molecules (JAM)-B and -C contribute to leukocyte extravasation to the skin and mediate cutaneous inflammation. J Invest Dermatol. 125:969–976. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hamazaki Y, Itoh M, Sasaki H, Furuse M and Tsukita S: Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem. 277:455–461. 2002. View Article : Google Scholar | |
Martinez-Estrada OM, Villa A, Breviario F, Orsenigo F, Dejana E and Bazzoni G: Association of junctional adhesion molecule with calcium/calmodulin-dependent serine protein kinase (CASK/LIN-2) in human epithelial caco-2 cells. J Biol Chem. 276:9291–9296. 2001. View Article : Google Scholar | |
Ebnet K, Schulz Cu, Meyer Zu, Brickwedde MK, Pendl GG and Vestweber D: Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem. 275:27979–27988. 2000.PubMed/NCBI | |
Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S and Dejana E: Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem. 275:20520–20526. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ebnet K, Suzuki A, Horikoshi Y, Hirose T, Meyer Zu, Brickwedde MK, Ohno S and Vestweber D: The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J. 20:3738–3748. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ebnet K, Aurrand-Lions M, Kuhn A, Kiefer F, Butz S, Zander K, Meyer zu Brickwedde MK, Suzuki A, Imhof BA and Vestweber D: The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: A possible role for JAMs in endothelial cell polarity. J Cell Sci. 116:3879–3891. 2003. View Article : Google Scholar : PubMed/NCBI | |
Meguenani M, Miljkovic-Licina M, Fagiani E, Ropraz P, Hammel P, Aurrand-Lions M, Adams RH, Christofori G, Imhof BA and Garrido-Urbani S: Junctional adhesion molecule B interferes with angiogenic VEGF/VEGFR2 signaling. FASEB J. 29:3411–3425. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hajjari M, Behmanesh M, Sadeghizadeh M and Zeinoddini M: Junctional adhesion molecules 2 and 3 may potentially be involved in progression of gastric adenocarcinoma tumors. Med Oncol. 30:3802013. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Huang JY, Chen YN, Yuan F, Zhang H, Yan FH, Wang MJ, Wang G, Su M, Lu G, et al: Whole genome and transcriptome sequencing of matched primary and peritoneal metastatic gastric carcinoma. Sci Rep. 5:137502015. View Article : Google Scholar : PubMed/NCBI | |
Huang JY, Xu YY, Sun Z, Wang ZN, Zhu Z, Song YX, Luo Y, Zhang X and Xu HM: Low junctional adhesion molecule A expression correlates with poor prognosis in gastric cancer. J Surg Res. 192:494–502. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kok-Sin T, Mokhtar NM, Ali Hassan NZ, Sagap I, Mohamed Rose I, Harun R and Jamal R: Identification of diagnostic markers in colorectal cancer via integrative epigenomics and genomics data. Oncol Rep. 34:22–32. 2015.PubMed/NCBI | |
Oster B, Thorsen K, Lamy P, Wojdacz TK, Hansen LL, Birkenkamp-Demtröder K, Sørensen KD, Laurberg S, Orntoft TF and Andersen CL: Identification and validation of highly frequent CpG island hypermethylation in colorectal adenomas and carcinomas. Int J Cancer. 129:2855–2866. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bujko M, Kober P, Mikula M, Ligaj M, Ostrowski J and Siedlecki JA: Expression changes of cell-cell adhesion-related genes in colorectal tumors. Oncol Lett. 9:2463–2470. 2015.PubMed/NCBI | |
Tenan M, Aurrand-Lions M, Widmer V, Alimenti A, Burkhardt K, Lazeyras F, Belkouch MC, Hammel P, Walker PR, Duchosal MA, et al: Cooperative expression of junctional adhesion molecule-C and -B supports growth and invasion of glioma. Glia. 58:524–537. 2010. | |
Qi LF, Liu J, Zhu HY, Li ZQ, Lu K, Li T and Shi D: Inhibition of glioma proliferation and migration by magnetic nanoparticle mediated JAM-2 silencing. J Mater Chem B Mater Biol Med. 2:7168–7175. 2014. View Article : Google Scholar | |
Qi LF, Shao WJ and Shi DL: JAM-2 siRNA intracellular delivery and real-time imaging by proton-sponge coated quantum dots. J Mater Chem B Mater Biol Med. 1:654–660. 2013. View Article : Google Scholar | |
Arcangeli ML, Frontera V, Bardin F, Thomassin J, Chetaille B, Adams S, Adams RH and Aurrand-Lions M: The junctional adhesion molecule-B regulates JAM-C-dependent melanoma cell metastasis. FEBS Lett. 586:4046–4051. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wu Z, Mei Q, Li X, Guo M, Fu X and Han W: Long non-coding RNA HOTAIR, a driver of malignancy, predicts negative prognosis and exhibits oncogenic activity in oesophageal squamous cell carcinoma. Br J Cancer. 109:2266–2278. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu CQ, Zhu ST, Wang M, Guo SL, Sun XJ, Cheng R, Xing J, Wang WH, Shao LL and Zhang ST: Pathway analysis of differentially expressed genes in human esophageal squamous cell carcinoma. Eur Rev Med Pharmacol Sci. 19:1652–1661. 2015.PubMed/NCBI | |
Coradini D, Fornili M, Ambrogi F, Boracchi P and Biganzoli E: TP53 mutation, epithelial-mesenchymal transition, and stemlike features in breast cancer subtypes. J Biomed Biotechnol. 2012:2540852012. View Article : Google Scholar : PubMed/NCBI | |
Bhan A, Hussain I, Ansari KI, Kasiri S, Bashyal A and Mandal SS: Antisense transcript long noncoding RNA (lncRNA) HOTAIR is transcriptionally induced by estradiol. J Mol Biol. 425:3707–3722. 2013. View Article : Google Scholar : PubMed/NCBI | |
McSherry EA, McGee SF, Jirstrom K, Doyle EM, Brennan DJ, Landberg G, Dervan PA, Hopkins AM and Gallagher WM: JAM-A expression positively correlates with poor prognosis in breast cancer patients. Int J Cancer. 125:1343–1351. 2009. View Article : Google Scholar : PubMed/NCBI | |
Singh B, Tschernig T, van Griensven M, Fieguth A and Pabst R: Expression of vascular adhesion protein-1 in normal and inflamed mice lungs and normal human lungs. Virchows Arch. 442:491–495. 2003.PubMed/NCBI | |
Reynolds LE, Watson AR, Baker M, Jones TA, D'Amico G, Robinson SD, Joffre C, Garrido-Urbani S, Rodriguez-Manzaneque JC, Martino-Echarri E, et al: Tumour angiogenesis is reduced in the Tc1 mouse model of Down's syndrome. Nature. 465:813–817. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Luo W, Huang B, Liu Z, Sun L, Zhang Q, Qiu X, Xu K and Wang E: Overexpression of JAM-A in non-small cell lung cancer correlates with tumor progression. PLoS One. 8:e791732013. View Article : Google Scholar : PubMed/NCBI | |
Zhuang Z, Jian P, Longjiang L, Bo H and Wenlin X: Oral cancer cells with different potential of lymphatic metastasis displayed distinct biologic behaviors and gene expression profiles. J Oral Pathol Med. 39:168–175. 2010. View Article : Google Scholar | |
Zhang Y, Zhang H, Huang Y, Sun R, Liu R and Wei J: Human leukocyte antigen (HLA)-C polymorphisms are associated with a decreased risk of rheumatoid arthritis. Mol Biol Rep. 41:4103–4108. 2014. View Article : Google Scholar : PubMed/NCBI | |
Harita Y, Miyauchi N, Karasawa T, Suzuki K, Han GD, Koike H, Igarashi T, Shimizu F and Kawachi H: Altered expression of junctional adhesion molecule 4 in injured podocytes. Am J Physiol Renal Physiol. 290:F335–F344. 2006. View Article : Google Scholar |