1
|
Kida K, Ishikawa T, Yamada A, Shimizu D,
Tanabe M, Sasaki T, Ichikawa Y and Endo I: A prospective
feasibility study of sentinel node biopsy by modified Indigocarmine
blue dye methods after neoadjuvant chemotherapy for breast cancer.
Eur J Surg Oncol. 41:566–570. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Perez EA, Dueck AC, McCullough AE, Chen B,
Geiger XJ, Jenkins RB, Lingle WL, Davidson NE, Martino S, Kaufman
PA, et al: Impact of PTEN protein expression on benefit from
adjuvant trastuzumab in early-stage human epidermal growth factor
receptor 2-positive breast cancer in the North Central Cancer
Treatment Group N9831 trial. J Clin Oncol. 31:2115–2122. 2013.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Tang LC, Wang BY, Sun S, Zhang J, Jia Z,
Lu YH, Di GH, Shao ZM and Hu XC: Higher rate of skin rash in a
phase II trial with weekly nanoparticle albumin-bound paclitaxel
and cisplatin combination in Chinese breast cancer patients. BMC
Cancer. 13:2322013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yoon JH, Mo JS, Ann EJ, Ahn JS, Jo EH, Lee
HJ, Hong SH, Kim MY, Kim EG, Lee K, et al: NOTCH1 intracellular
domain negatively regulates PAK1 signaling pathway through direct
interaction. Biochim Biophys Acta. 1863:179–188. 2016. View Article : Google Scholar
|
5
|
Khare V, Dammann K, Asboth M, Krnjic A,
Jambrich M and Gasche C: Overexpression of PAK1 promotes cell
survival in inflammatory bowel diseases and colitis-associated
cancer. Inflamm Bowel Dis. 21:287–296. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nie J, Sun C, Faruque O, Ye G, Li J, Liang
Q, Chang Z, Yang W, Han X and Shi Y: Synapses of amphids defective
(SAD-A) kinase promotes glucose-stimulated insulin secretion
through activation of p21-activated kinase (PAK1) in pancreatic
β-cells. J Biol Chem. 287:26435–26444. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chow HY, Jubb AM, Koch JN, Jaffer ZM,
Stepanova D, Campbell DA, Duron SG, O'Farrell M, Cai KQ,
Klein-Szanto AJ, et al: p21-Activated kinase 1 is required for
efficient tumor formation and progression in a Ras-mediated skin
cancer model. Cancer Res. 72:5966–5975. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang L, Tian H, Yuan J, Wu H, Wu J and Zhu
X: CONSORT: Sam68 is directly regulated by miR-204 and promotes the
self-renewal potential of breast cancer cells by activating the
Wnt/beta-catenin signaling pathway. Medicine. 94:e22282015.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Dong Y, Cao B, Zhang M, Han W, Herman JG,
Fuks F, Zhao Y and Guo M: Epigenetic silencing of NKD2, a major
component of Wnt signaling, promotes breast cancer growth.
Oncotarget. 6:22126–22138. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kim ME, Ha TK, Yoon JH and Lee JS:
Myricetin induces cell death of human colon cancer cells via
BAX/BCL2-dependent pathway. Anticancer Res. 34:701–706.
2014.PubMed/NCBI
|
11
|
Iyer SC, Gopal A and Halagowder D:
Myricetin induces apoptosis by inhibiting P21 activated kinase 1
(PAK1) signaling cascade in hepatocellular carcinoma. Mol Cell
Biochem. 407:223–237. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Masuda T, Miura Y, Inai M and Masuda A:
Enhancing effect of a cysteinyl thiol on the antioxidant activity
of flavonoids and identification of the antioxidative thiol adducts
of myricetin. Biosci Biotechnol Biochem. 77:1753–1758. 2013.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Kang KA, Wang ZH, Zhang R, Piao MJ, Kim
KC, Kang SS, Kim YW, Lee J, Park D and Hyun JW: Myricetin protects
cells against oxidative stress-induced apoptosis via regulation of
PI3K/Akt and MAPK signaling pathways. Int J Mol Sci. 11:4348–4360.
2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Arving C, Brandberg Y, Feldman I,
Johansson B and Glimelius B: Cost-utility analysis of individual
psychosocial support interventions for breast cancer patients in a
randomized controlled study. Psychooncology. 23:251–258. 2014.
View Article : Google Scholar
|
15
|
Zhang J, Wang L, Wang Z, Hu X, Wang B, Cao
J, Lv F, Zhen C, Zhang S and Shao Z: A phase II trial of biweekly
vinorelbine and oxaliplatin in second- or third-line metastatic
triple-negative breast cancer. Cancer Biol Ther. 16:225–232. 2015.
View Article : Google Scholar : PubMed/NCBI
|
16
|
DeSantiago J, Bare DJ, Xiao L, Ke Y,
Solaro RJ and Banach K: p21-Activated kinase1 (Pak1) is a negative
regulator of NADPH-oxidase 2 in ventricular myocytes. J Mol Cell
Cardiol. 67:77–85. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
McDaniel AS, Allen JD, Park SJ, Jaffer ZM,
Michels EG, Burgin SJ, Chen S, Bessler WK, Hofmann C, Ingram DA, et
al: Pak1 regulates multiple c-kit mediated Ras-MAPK
gain-in-function phenotypes in Nf1+/− masT cells. Blood.
112:4646–4654. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Holm C, Rayala S, Jirström K, Stål O,
Kumar R and Landberg G: Association between Pak1 expression and
subcellular localization and tamoxifen resistance in breast cancer
patients. J Natl Cancer Inst. 98:671–680. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Smith SD, Jaffer ZM, Chernoff J and Ridley
AJ: PAK1-mediated activation of ERK1/2 regulates lamellipodial
dynamics. J Cell Sci. 121:3729–3736. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Dillon LM, Bean JR, Yang W, Shee K,
Symonds LK, Balko JM, McDonald WH, Liu S, Gonzalez-Angulo AM, Mills
GB, et al: P-REX1 creates a positive feedback loop to activate
growth factor receptor, PI3K/AKT and MEK/ERK signaling in breast
cancer. Oncogene. 34:3968–3976. 2015. View Article : Google Scholar
|
21
|
Tarkkonen K, Ruohola J and Härkönen P:
Fibroblast growth factor 8 induced downregulation of thrombospondin
1 is mediated by the MEK/ERK and PI3K pathways in breast cancer
cells. Growth Factors. 28:256–267. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu WH, Liu HB, Gao DK, Ge GQ, Zhang P,
Sun SR, Wang HM and Liu SB: ABCG2 protects kidney side population
cells from hypoxia/reoxygenation injury through activation of the
MEK/ERK pathway. Cell Transplant. 22:1859–1868. 2013. View Article : Google Scholar
|
23
|
Navolanic PM, Lee JT and McCubrey JA:
Docetaxel cytotoxicity is enhanced by inhibition of the Raf/MEK/ERK
signal transduction pathway. Cancer Biol Ther. 2:677–678. 2003.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Li SQ, Wang ZH, Mi XG, Liu L and Tan Y:
MiR-199a/b-3p suppresses migration and invasion of breast cancer
cells by downregulating PAK4/MEK/ERK signaling pathway. IUBMB Life.
67:768–777. 2015. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Lim TG, Lee BK, Kwon JY, Jung SK and Lee
KW: Acrylamide up-regulates cyclooxygenase-2 expression through the
MEK/ERK signaling pathway in mouse epidermal cells. Food Chem
Toxicol. 49:1249–1254. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang J, Yang Z, Li P, Bledsoe G, Chao L
and Chao J: Kallistatin antagonizes Wnt/β-catenin signaling and
cancer cell motility via binding to low-density lipoprotein
receptor-related protein 6. Mol Cell Biochem. 379:295–301. 2013.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Chow KH, Sun RW, Lam JB, Li CK, Xu A, Ma
DL, Abagyan R, Wang Y and Che CM: A gold(III) porphyrin complex
with antitumor properties targets the Wnt/beta-catenin pathway.
Cancer Res. 70:329–337. 2010. View Article : Google Scholar
|
28
|
Prasad CP, Chaurasiya SK, Axelsson L and
Andersson T: WNT-5A triggers Cdc42 activation leading to an ERK1/2
dependent decrease in MMP9 activity and invasive migration of
breast cancer cells. Mol Oncol. 7:870–883. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhu L, Zhu B, Yang L, Zhao X, Jiang H and
Ma F: RelB regulates Bcl-xl expression and the irradiation-induced
apoptosis of murine prostate cancer cells. Biomed Rep. 2:354–358.
2014.PubMed/NCBI
|
30
|
Guo Y, Zhang Y, Yang X, Lu P, Yan X, Xiao
F, Zhou H, Wen C, Shi M, Lu J, et al: Effects of methylglyoxal and
glyoxalase I inhibition on breast Cancer cells proliferation,
invasion, and apoptosis through modulation of MAPKs, MMP9, and
Bcl-2. Cancer Biol Ther. 1–12. 2015.
|