1
|
Malvezzi M, Bertuccio P, Levi F, La
Vecchia C and Negri E: European cancer mortality predictions for
the year 2014. Ann Oncol. 25:1650–1656. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Thoreson GR, Gayed BA, Chung PH and Raj
GV: Emerging therapies in castration resistant prostate cancer. Can
J Urol. 21(Supp 1): S98–S105. 2014.
|
3
|
Matsumoto K, Hagiwara M, Tanaka N,
Hayakawa N, Ishida M, Ninomiya A, Nakajima Y and Nakamura S:
Survival following primary androgen deprivation therapy for
localized intermediate- or high-risk prostate cancer: Comparison
with the life expectancy of the age-matched normal population. Med
Oncol. 31:9792014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Rettig WJ, Thomson TM, Spengler BA,
Biedler JL and Old LJ: Assignment of human nerve growth factor
receptor gene to chromosome 17 and regulation of receptor
expression in somatic cell hybrids. Somat Cell Mol Genet.
12:441–447. 1986. View Article : Google Scholar : PubMed/NCBI
|
5
|
Haiman CA, Chen GK, Blot WJ, Strom SS,
Berndt SI, Kittles RA, Rybicki BA, Isaacs WB, Ingles SA, Stanford
JL, et al: Genome-wide association study of prostate cancer in men
of African ancestry identifies a susceptibility locus at 17q21. Nat
Genet. 43:570–573. 2011. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Watson SK, Woolcock BW, Fee JN, Bainbridge
TC, Webber D, Kinahan TJ, Lam WL and Vielkind JR: Minimum altered
regions in early prostate cancer progression identified by high
resolution whole genome tiling path BAC array comparative
hybridization. Prostate. 69:961–975. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Johnson D, Lanahan A, Buck CR, Sehgal A,
Morgan C, Mercer E, Bothwell M and Chao M: Expression and structure
of the human NGF receptor. Cell. 47:545–554. 1986. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sigala S, Bodei S, Missale C, Zani D,
Simeone C, Cunico SC and Spano PF: Gene expression profile of
prostate cancer cell lines: Effect of nerve growth factor
treatment. Mol Cell Endocrinol. 284:11–20. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Rende M, Rambotti MG, Stabile AM, Pistilli
A, Montagnoli C, Chiarelli MT and Mearini E: Novel localization of
low affinity NGF receptor (p75) in the stroma of prostate cancer
and possible implication in neoplastic invasion: An
immunohistochemical and ultracytochemical study. Prostate.
70:555–561. 2010.
|
10
|
Arrighi N, Bodei S, Zani D, Simeone C,
Cunico SC, Missale C, Spano P and Sigala S: Nerve growth factor
signaling in prostate health and disease. Growth Factors.
28:191–201. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Festuccia C, Gravina GL, Muzi P, Pomante
R, Ventura L, Ricevuto E, Vicentini C and Bologna M: In vitro and
in vivo effects of bicalutamide on the expression of TrkA and P75
neurotrophin receptors in prostate carcinoma. Prostate.
67:1255–1264. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bassili M, Birman E, Schor NF and Saragovi
HU: Differential roles of Trk and p75 neurotrophin receptors in
tumorigenesis and chemoresistance ex vivo and in vivo. Cancer
Chemother Pharmacol. 65:1047–1056. 2010. View Article : Google Scholar
|
13
|
Perez M, Regan T, Pflug B, Lynch J and
Djakiew D: Loss of low-affinity nerve growth factor receptor during
malignant transformation of the human prostate. Prostate.
30:274–279. 1997. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fromont G, Godet J, Pires C, Yacoub M,
Dore B and Irani J: Biological significance of perineural invasion
(PNI) in prostate cancer. Prostate. 72:542–548. 2012. View Article : Google Scholar
|
15
|
Khwaja F, Tabassum A, Allen J and Djakiew
D: The p75NTR tumor suppressor induces cell cycle arrest
facilitating caspase mediated apoptosis in prostate tumor cells.
Biochem Biophys Res Commun. 341:1184–1192. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Molloy NH, Read DE and Gorman AM: Nerve
growth factor in cancer cell death and survival. Cancers.
3:510–530. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sigala S, Tognazzi N, Rizzetti MC, Faraoni
I, Missale C, Bonmassar E and Spano P: Nerve growth factor induces
the re-expression of functional androgen receptors and
p75NGFR in the androgen-insensitive prostate cancer cell
line DU145. Eur J Endocrinol. 147:407–415. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sánchez C, Clementi M, Benitez D,
Contreras H, Huidobro C and Castellón E: Effect of GnRH analogs on
the expression of TrkA and p75 neurotrophin receptors in primary
cell cultures from human prostate adenocarcinoma. Prostate.
65:195–202. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Gravina GL, Marampon F, Piccolella M,
Motta M, Ventura L, Pomante R, Popov VM, Zani BM, Pestell RG,
Tombolini V, et al: Hormonal therapy promotes hormone-resistant
phenotype by increasing DNMT activity and expression in prostate
cancer models. Endocrinology. 152:4550–4561. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gravina GL, Marampon F, Di Staso M,
Bonfili P, Vitturini A, Jannini EA, Pestell RG, Tombolini V and
Festuccia C: 5-Azacitidine restores and amplifies the bicalutamide
response on preclinical models of androgen receptor expressing or
deficient prostate tumors. Prostate. 70:1166–1178. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
McCabe MT, Low JA, Daignault S, Imperiale
MJ, Wojno KJ and Day ML: Inhibition of DNA methyltransferase
activity prevents tumorigenesis in a mouse model of prostate
cancer. Cancer Res. 66:385–392. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zorn CS, Wojno KJ, McCabe MT, Kuefer R,
Gschwend JE and Day ML: 5-aza-2′-deoxycytidine delays
androgen-independent disease and improves survival in the
transgenic adenocarcinoma of the mouse prostate mouse model of
prostate cancer. Clin Cancer Res. 13:2136–2143. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Festuccia C, Gravina GL, D'Alessandro AM,
Muzi P, Millimaggi D, Dolo V, Ricevuto E, Vicentini C and Bologna
M: Azacitidine improves antitumor effects of docetaxel and
cisplatin in aggressive prostate cancer models. Endocr Relat
Cancer. 16:401–413. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yu JD, Yang K, Mao QQ, Kong DB, Zheng XY
and Xie LP: Estrogen in combination with 5-azacitidine up-regulates
p75NTR expression and induces apoptosis in 22Rv1 prostate cancer
cells. Mol Med Rep. 2:831–836. 2009.PubMed/NCBI
|
25
|
Gravina GL, Festuccia C, Millimaggi D,
Dolo V, Tombolini V, de Vito M, Vicentini C and Bologna M: Chronic
azacitidine treatment results in differentiating effects,
sensitizes against bicalutamide in androgen-independent prostate
cancer cells. Prostate. 68:793–801. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Khwaja F, Allen J, Lynch J, Andrews P and
Djakiew D: Ibuprofen inhibits survival of bladder cancer cells by
induced expression of the p75NTR tumor suppressor
protein. Cancer Res. 64:6207–6213. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Uzgare AR, Kaplan PJ and Greenberg NM:
Differential expression and/or activation of P38 MAPK, erk1/2, and
jnk during the initiation and progression of prostate cancer.
Prostate. 55:128–139. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cho SD, Li G, Hu H, Jiang C, Kang KS, Lee
YS, Kim SH and Lu J: Involvement of c-Jun N-terminal kinase in G2/M
arrest and caspase-mediated apoptosis induced by sulforaphane in
DU145 prostate cancer cells. Nutr Cancer. 52:213–224. 2005.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Eibl JK, Strasser BC and Ross GM:
Identification of novel pyrazoloquinazolinecarboxilate analogues to
inhibit nerve growth factor in vitro. Eur J Pharmacol. 708:30–37.
2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Festuccia C, Gravina GL, D'Alessandro AM,
Millimaggi D, Di Rocco C, Dolo V, Ricevuto E, Vicentini C and
Bologna M: Downmodulation of dimethyl transferase activity enhances
tumor necrosis factor-related apoptosis-inducing ligand-induced
apoptosis in prostate cancer cells. Int J Oncol. 33:381–388.
2008.PubMed/NCBI
|
31
|
He W, Wang Q, Xu J, Xu X, Padilla MT, Ren
G, Gou X and Lin Y: Attenuation of TNFSF10/TRAIL-induced apoptosis
by an autophagic survival pathway involving TRAF2- and
RIPK1/RIP1-mediated MAPK8/JNK activation. Autophagy. 8:1811–1821.
2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Labsch S, Liu L, Bauer N, Zhang Y,
Aleksandrowicz E, Gladkich J, Schönsiegel F and Herr I:
Sulforaphane and TRAIL induce a synergistic elimination of advanced
prostate cancer stem-like cells. Int J oncol. 44:1470–1480.
2014.PubMed/NCBI
|
33
|
Szliszka E, Zydowicz G, Mizgala E and Krol
W: Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) sensitizes
LNCaP prostate cancer cells to TRAIL-induced apoptosis. Int J
Oncol. 41:818–828. 2012.PubMed/NCBI
|
34
|
Jung YH, Lim EJ, Heo J, Kwon TK and Kim
YH: Tunicamycin sensitizes human prostate cells to TRAIL-induced
apoptosis by upregulation of TRAIL receptors and downregulation of
cIAP2. Int J Oncol. 40:1941–1948. 2012.PubMed/NCBI
|
35
|
Gober MD, Smith CC, Ueda K, Toretsky JA
and Aurelian L: Forced expression of the H11 heat shock protein can
be regulated by DNA methylation and trigger apoptosis in human
cells. J Biol Chem. 278:37600–37609. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Monks TJ, Xie R, Tikoo K and Lau SS:
Ros-induced histone modifications and their role in cell survival
and cell death. Drug Metab Rev. 38:755–767. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang D, Lu J and Tindall DJ: Androgens
regulate TRAIL-induced cell death in prostate cancer cells via
multiple mechanisms. Cancer Lett. 335:136–144. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Shankar S and Srivastava RK: Enhancement
of therapeutic potential of TRAIL by cancer chemotherapy and
irradiation: Mechanisms and clinical implications. Drug Resist
Updat. 7:139–156. 2004. View Article : Google Scholar : PubMed/NCBI
|
39
|
Mitsiades N, Poulaki V, Tseleni-Balafouta
S, Koutras DA and Stamenkovic I: Thyroid carcinoma cells are
resistant to FAS-mediated apoptosis but sensitive to tumor necrosis
factor-related apoptosis-inducing ligand. Cancer Res. 60:4122–4129.
2000.PubMed/NCBI
|
40
|
Mimouni-Rongy M, White JH, Weinstein DE,
Desbarats J and Almazan G: Fas ligand acts as a counter-receptor in
Schwann cells and induces the secretion of bioactive nerve growth
factor. J Neuroimmunol. 230:17–25. 2011. View Article : Google Scholar
|
41
|
Yin L and Chung WO: Epigenetic regulation
of human β-defensin 2 and CC chemokine ligand 20 expression in
gingival epithelial cells in response to oral bacteria. Mucosal
Immunol. 4:409–419. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Javierre BM and Richardson B: A new
epigenetic challenge: Systemic lupus erythematosus. Adv Exp Med
Biol. 711:117–136. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Cifone MG, Botti D, Festuccia C,
Napolitano T, del Grosso E, Cavallo G, Chessa MA and Santoni A:
Involvement of phospholipase A2 activation and arachidonic acid
metabolism in the cytotoxic functions of rat NK cells. Cell
Immunol. 148:247–258. 1993. View Article : Google Scholar : PubMed/NCBI
|
44
|
Benedetti E, Galzio R, Cinque B, Biordi L,
D'Amico MA, D'Angelo B, Laurenti G, Ricci A, Festuccia C, Cifone
MG, et al: Biomolecular characterization of human glioblastoma
cells in primary cultures: Differentiating and antiangiogenic
effects of natural and synthetic PPARgamma agonists. J Cell
Physiol. 217:93–102. 2008. View Article : Google Scholar : PubMed/NCBI
|
45
|
Di Loreto S, D'Angelo B, D'Amico MA,
Benedetti E, Cristiano L, Cinque B, Cifone MG, Cerù MP, Festuccia C
and Cimini A: PPARbeta agonists trigger neuronal differentiation in
the human neuroblastoma cell line SH-SY5Y. J Cell Physiol.
211:837–847. 2007. View Article : Google Scholar : PubMed/NCBI
|