1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Quang DN, Hashimoto T, Arakawa Y, Kohchi
C, Nishizawa T, Soma G and Asakawa Y: Grifolin derivatives from
Albatrellus caeruleoporus, new inhibitors of nitric oxide
production in RAW 264.7 cells. Bioorg Med Chem. 14:164–168. 2006.
View Article : Google Scholar
|
3
|
Liu XT, Winkler AL, Schwan WR, Volk TJ,
Rott MA and Monte A: Antibacterial compounds from mushrooms I: A
lanostane-type triterpene and prenylphenol derivatives from
Jahnoporus hirtus and Albatrellus flettii and their activities
against Bacillus cereus and Enterococcus faecalis. Planta Med.
76:182–185. 2010. View Article : Google Scholar
|
4
|
Luo X, Yu X, Liu S, Deng Q, Liu X, Peng S,
Li H, Liu J and Cao Y: The role of targeting kinase activity by
natural products in cancer chemoprevention and chemotherapy
(Review). Oncol Rep. 34:547–554. 2015.PubMed/NCBI
|
5
|
Luo XJ, Li W, Yang LF, Yu XF, Xiao LB,
Tang M, Dong X, Deng QP, Bode AM, Liu JK, et al: DAPK1 mediates the
G1 phase arrest in human nasopharyngeal carcinoma cells induced by
grifolin, a potential antitumor natural product. Eur J Pharmacol.
670:427–434. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ye M, Luo X, Li L, Shi Y, Tan M, Weng X,
Li W, Liu J and Cao Y: Grifolin, a potential antitumor natural
product from the mushroom Albatrellus confluens, induces cell-cycle
arrest in G1 phase via the ERK1/2 pathway. Cancer Lett.
258:199–207. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Luo XJ, Li LL, Deng QP, Yu XF, Yang LF,
Luo FJ, Xiao LB, Chen XY, Ye M, Liu JK, et al: Grifolin, a potent
antitumour natural product upregulates death-associated protein
kinase 1 DAPK1 via p53 in nasopharyngeal carcinoma cells. Eur J
Cancer. 47:316–325. 2011. View Article : Google Scholar
|
8
|
Jin S, Pang RP, Shen JN, Huang G, Wang J
and Zhou JG: Grifolin induces apoptosis via inhibition of PI3K/AKT
signalling pathway in human osteosarcoma cells. Apoptosis.
12:1317–1326. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Luo X, Yang L, Xiao L, Xia X, Dong X,
Zhong J, Liu Y, Li N, Chen L, Li H, et al: Grifolin directly
targets ERK1/2 to epigenetically suppress cancer cell metastasis.
Oncotarget. 6:42704–42716. 2015.PubMed/NCBI
|
10
|
Liang C, Feng P, Ku B, Dotan I, Canaani D,
Oh BH and Jung JU: Autophagic and tumour suppressor activity of a
novel Beclin1-binding protein UVRAG. Nat Cell Biol. 8:688–699.
2006. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Mizushima N, Yoshimori T and Levine B:
Methods in mammalian autophagy research. Cell. 140:313–326. 2010.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zi D, Zhou ZW, Yang YJ, Huang L, Zhou ZL,
He SM, He ZX and Zhou SF: Danusertib induces apoptosis, cell cycle
arrest, and autophagy but inhibits epithelial to Mesenchymal
transition involving PI3K/Akt/mTOR signaling pathway in human
ovarian cancer cells. Int J Mol Sci. 16:27228–27251. 2015.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhao G, Han X, Zheng S, Li Z, Sha Y, Ni J,
Sun Z, Qiao S and Song Z: Curcumin induces autophagy, inhibits
proliferation and invasion by downregulating AKT/mTOR signaling
pathway in human melanoma cells. Oncol Rep. 35:1065–1074. 2016.
|
14
|
Wang KF, Yang H, Jiang WQ, Li S and Cai
YC: Puquitinib mesylate (XC-302) induces autophagy via inhibiting
the PI3K/AKT/mTOR signaling pathway in nasopharyngeal cancer cells.
Int J Mol Med. 36:1556–1562. 2015.PubMed/NCBI
|
15
|
Blanco-Aparicio C and Renner O: PTEN, more
than the AKT pathway. Carcinogenesis. 28:1379–1386. 2007.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Fingar DC, Salama S, Tsou C, Harlow E and
Blenis J: Mammalian cell size is controlled by mTOR and its
downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 16:1472–1487.
2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Harada H, Andersen JS, Mann M, Terada N
and Korsmeyer SJ: p70S6 kinase signals cell survival as well as
growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad
Sci USA. 98:9666–9670. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Feigin ME, Akshinthala SD, Araki K,
Rosenberg AZ, Muthuswamy LB, Martin B, Lehmann BD, Berman HK,
Pietenpol JA, Cardiff RD, et al: Mislocalization of the cell
polarity protein scribble promotes mammary tumorigenesis and is
associated with basal breast cancer. Cancer Res. 74:3180–3194.
2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Vivanco I and Sawyers CL: The
phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev
Cancer. 2:489–501. 2002. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Kondo Y, Kanzawa T, Sawaya R and Kondo S:
The role of autophagy in cancer development and response to
therapy. Nat Rev Cancer. 5:726–734. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang X, Qi W, Li Y, Zhang N, Dong L, Sun
M, Cun J, Zhang Y, Lv S and Yang Q: Huaier extract induces
autophagic cell death by inhibiting the mTOR/S6K pathway in breast
cancer cells. PLoS One. 10:e01317712015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shi YM, Yang L, Geng YD, Zhang C and Kong
LY: Polyphyllin I induced-apoptosis is enhanced by inhibition of
autophagy in human hepatocellular carcinoma cells. Phytomedicine.
22:1139–1149. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Li YR, Li S, Ho CT, Chang YH, Tan KT,
Chung TW, Wang BY, Chen YK and Lin CC: Tangeretin derivative,
5-Acetyloxy-6, 7, 8,4′-tetramethoxyflavone induces G2/M arrest,
apoptosis and autophagy in human non-small cell lung cancer cells
in vitro and In vivo. Cancer Biol Ther. 17:48–64. 2016. View Article : Google Scholar
|
24
|
Wang CW and Klionsky DJ: The molecular
mechanism of autophagy. Mol Med. 9:65–76. 2003.PubMed/NCBI
|
25
|
Kamber RA, Shoemaker CJ and Denic V: A
molecular switch for selective autophagosome formation. Autophagy.
11:2132–2133. 2015. View Article : Google Scholar : PubMed/NCBI
|