Accuracy of novel diagnostic biomarkers for hepatocellular carcinoma: An update for clinicians (Review)
- Authors:
- Patrick Reichl
- Wolfgang Mikulits
-
Affiliations: Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria - Published online on: June 1, 2016 https://doi.org/10.3892/or.2016.4842
- Pages: 613-625
-
Copyright: © Reichl et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ferlay J, Shin HR, Bray F, Forman D, Mathers C and Parkin DM: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar | |
Venook AP, Papandreou C, Furuse J and de Guevara LL: The incidence and epidemiology of hepatocellular carcinoma: A global and regional perspective. Oncologist. 15(Suppl 4): 5–13. 2010. View Article : Google Scholar : PubMed/NCBI | |
Llovet JM, Brú C and Bruix J: Prognosis of hepatocellular carcinoma: The BCLC staging classification. Semin Liver Dis. 19:329–338. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bruix J and Sherman M; American Association for the Study of Liver Diseases: Management of hepatocellular carcinoma: An update. Hepatology. 53:1020–1022. 2011. View Article : Google Scholar : PubMed/NCBI | |
El-Serag HB, Marrero JA, Rudolph L and Reddy KR: Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology. 134:1752–1763. 2008. View Article : Google Scholar : PubMed/NCBI | |
Altekruse SF, McGlynn KA and Reichman ME: Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol. 27:1485–1491. 2009. View Article : Google Scholar : PubMed/NCBI | |
Llovet JM, Bustamante J, Castells A, Vilana R, Ayuso MC, Sala M, Brú C, Rodés J and Bruix J: Natural history of untreated nonsurgical hepatocellular carcinoma: Rationale for the design and evaluation of therapeutic trials. Hepatology. 29:62–67. 1999. View Article : Google Scholar | |
Singal A, Volk ML, Waljee A, Salgia R, Higgins P, Rogers MA and Marrero JA: Meta-analysis: Surveillance with ultrasound for early-stage hepatocellular carcinoma in patients with cirrhosis. Aliment Pharmacol Ther. 30:37–47. 2009. View Article : Google Scholar : PubMed/NCBI | |
Singal AG, Conjeevaram HS, Volk ML, Fu S, Fontana RJ, Askari F, Su GL, Lok AS and Marrero JA: Effectiveness of hepatocellular carcinoma surveillance in patients with cirrhosis. Cancer Epidemiol Biomarkers Prev. 21:793–799. 2012. View Article : Google Scholar : PubMed/NCBI | |
Marrero JA, Feng Z, Wang Y, Nguyen MH, Befeler AS, Roberts LR, Reddy KR, Harnois D, Llovet JM, Normolle D, et al: Alpha-fetoprotein, des-gamma carboxyprothrombin, and lectin-bound alpha-fetoprotein in early hepatocellular carcinoma. Gastroenterology. 137:110–118. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mao Y, Yang H, Xu H, Lu X, Sang X, Du S, Zhao H, Chen W, Xu Y, Chi T, et al: Golgi protein 73 (GOLPH2) is a valuable serum marker for hepatocellular carcinoma. Gut. 59:1687–1693. 2010. View Article : Google Scholar : PubMed/NCBI | |
Farinati F, Marino D, De Giorgio M, Baldan A, Cantarini M, Cursaro C, Rapaccini G, Del Poggio P, Di Nolfo MA, Benvegnù L, et al: Diagnostic and prognostic role of alpha-fetoprotein in hepatocellular carcinoma: Both or neither? Am J Gastroenterol. 101:524–532. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lok AS, Sterling RK, Everhart JE, Wright EC, Hoefs JC, Di Bisceglie AM, Morgan TR, Kim HY, Lee WM, Bonkovsky HL, et al HALT-C Trial Group: Des-gamma-carboxy prothrombin and alpha-fetoprotein as biomarkers for the early detection of hepatocellular carcinoma. Gastroenterology. 138:493–502. 2010. View Article : Google Scholar | |
Saffroy R, Pham P, Reffas M, Takka M, Lemoine A and Debuire B: New perspectives and strategy research biomarkers for hepatocellular carcinoma. Clin Chem Lab Med. 45:1169–1179. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen DS, Sung JL, Sheu JC, Lai MY, How SW, Hsu HC, Lee CS and Wei TC: Serum alpha-fetoprotein in the early stage of human hepatocellular carcinoma. Gastroenterology. 86:1404–1409. 1984.PubMed/NCBI | |
Hu B, Tian X, Sun J and Meng X: Evaluation of individual and combined applications of serum biomarkers for diagnosis of hepatocellular carcinoma: A meta-analysis. Int J Mol Sci. 14:23559–23580. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jia X, Liu J, Gao Y, Huang Y and Du Z: Diagnosis accuracy of serum glypican-3 in patients with hepatocellular carcinoma: A systematic review with meta-analysis. Arch Med Res. 45:580–588. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ge T, Shen Q, Wang N, Zhang Y, Ge Z, Chu W, Lv X, Zhao F, Zhao W, Fan J, et al: Diagnostic values of alpha-fetoprotein, dickkopf-1, and osteopontin for hepatocellular carcinoma. Med Oncol. 32:592015. View Article : Google Scholar : PubMed/NCBI | |
Warnock DG and Peck CC: A roadmap for biomarker qualification. Nat Biotechnol. 28:444–445. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sharma MC and Sharma M: The role of annexin II in angiogenesis and tumor progression: A potential therapeutic target. Curr Pharm Des. 13:3568–3575. 2007. View Article : Google Scholar | |
Emoto K, Sawada H, Yamada Y, Fujimoto H, Takahama Y, Ueno M, Takayama T, Uchida H, Kamada K, Naito A, et al: Annexin II overexpression is correlated with poor prognosis in human gastric carcinoma. Anticancer Res. 21:1339–1345. 2001.PubMed/NCBI | |
Qi YJ, He QY, Ma YF, Du YW, Liu GC, Li YJ, Tsao GS, Ngai SM and Chiu JF: Proteomic identification of malignant transformation-related proteins in esophageal squamous cell carcinoma. J Cell Biochem. 104:1625–1635. 2008. View Article : Google Scholar : PubMed/NCBI | |
Alfonso P, Cañamero M, Fernández-Carbonié F, Núñez A and Casal JI: Proteome analysis of membrane fractions in colorectal carcinomas by using 2D-DIGE saturation labeling. J Proteome Res. 7:4247–4255. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yao H, Zhang Z, Xiao Z, Chen Y, Li C, Zhang P, Li M, Liu Y, Guan Y, Yu Y, et al: Identification of metastasis associated proteins in human lung squamous carcinoma using two-dimensional difference gel electrophoresis and laser capture microdissection. Lung Cancer. 65:41–48. 2009. View Article : Google Scholar | |
Sharma MR, Koltowski L, Ownbey RT, Tuszynski GP and Sharma MC: Angiogenesis-associated protein annexin II in breast cancer: Selective expression in invasive breast cancer and contribution to tumor invasion and progression. Exp Mol Pathol. 81:146–156. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhao P, Zhang W, Wang SJ, Yu XL, Tang J, Huang W, Li Y, Cui HY, Guo YS, Tavernier J, et al: HAb18G/CD147 promotes cell motility by regulating annexin II-activated RhoA and Rac1 signaling pathways in hepatocellular carcinoma cells. Hepatology. 54:2012–2024. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lokman NA, Ween MP, Oehler MK and Ricciardelli C: The role of annexin A2 in tumorigenesis and cancer progression. Cancer Microenviron. 4:199–208. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yu GR, Kim SH, Park SH, Cui XD, Xu DY, Yu HC, Cho BH, Yeom YI, Kim SS, Kim SB, et al: Identification of molecular markers for the oncogenic differentiation of hepatocellular carcinoma. Exp Mol Med. 39:641–652. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ji NY, Park MY, Kang YH, Lee CI, Kim DG, Yeom YI, Jang YJ, Myung PK, Kim JW, Lee HG, et al: Evaluation of Annexin II as a potential serum marker for hepatocellular carcinoma using a developed sandwich ELISA method. Int J Mol Med. 24:765–771. 2009.PubMed/NCBI | |
Sun Y, Gao G, Cai J, Wang Y, Qu X, He L, Liu F, Zhang Y, Lin K, Ma S, et al: Annexin A2 is a discriminative serological candidate in early hepatocellular carcinoma. Carcinogenesis. 34:595–604. 2013. View Article : Google Scholar : | |
Axelrod H and Pienta KJ: Axl as a mediator of cellular growth and survival. Oncotarget. 5:8818–8852. 2014. View Article : Google Scholar : PubMed/NCBI | |
Paccez JD, Vogelsang M, Parker MI and Zerbini LF: The receptor tyrosine kinase Axl in cancer: Biological functions and therapeutic implications. Int J Cancer. 134:1024–1033. 2014. View Article : Google Scholar | |
Tsou AP, Wu KM, Tsen TY, Chi CW, Chiu JH, Lui WY, Hu CP, Chang C, Chou CK and Tsai SF: Parallel hybridization analysis of multiple protein kinase genes: Identification of gene expression patterns characteristic of human hepatocellular carcinoma. Genomics. 50:331–340. 1998. View Article : Google Scholar : PubMed/NCBI | |
Xu MZ, Chan SW, Liu AM, Wong KF, Fan ST, Chen J, Poon RT, Zender L, Lowe SW, Hong W, et al: AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene. 30:1229–1240. 2011. View Article : Google Scholar | |
Reichl P, Dengler M, van Zijl F, Huber H, Führlinger G, Reichel C, Sieghart W, Peck-Radosavljevic M, Grubinger M and Mikulits W: Axl activates autocrine transforming growth factor-β signaling in hepatocellular carcinoma. Hepatology. 61:930–941. 2015. View Article : Google Scholar : | |
Ekman C, Stenhoff J and Dahlbäck B: Gas6 is complexed to the soluble tyrosine kinase receptor Axl in human blood. J Thromb Haemost. 8:838–844. 2010. View Article : Google Scholar : PubMed/NCBI | |
Reichl P, Fang M, Starlinger P, Staufer K, Nenutil R, Muller P, Greplova K, Valik D, Dooley S, Brostjan C, et al: Multicenter analysis of soluble Axl reveals diagnostic value for very early stage hepatocellular carcinoma. Int J Cancer. 137:385–394. 2015. View Article : Google Scholar : | |
Laurent TC, Moore EC and Reichard P: Enzymatic synthesis of deoxyribonucleotides. IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia Coli B. J Biol Chem. 239:3436–3444. 1964.PubMed/NCBI | |
Nordberg J and Arnér ES: Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 31:1287–1312. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mahmood DF, Abderrazak A, El Hadri K, Simmet T and Rouis M: The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal. 19:1266–1303. 2013. View Article : Google Scholar | |
Kaimul AM, Nakamura H, Masutani H and Yodoi J: Thioredoxin and thioredoxin-binding protein-2 in cancer and metabolic syndrome. Free Radic Biol Med. 43:861–868. 2007. View Article : Google Scholar : PubMed/NCBI | |
Arnér ES and Holmgren A: The thioredoxin system in cancer. Semin Cancer Biol. 16:420–426. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mollbrink A, Jawad R, Vlamis-Gardikas A, Edenvik P, Isaksson B, Danielsson O, Stål P and Fernandes AP: Expression of thioredoxins and glutaredoxins in human hepatocellular carcinoma: Correlation to cell proliferation, tumor size and metabolic syndrome. Int J Immunopathol Pharmacol. 27:169–183. 2014.PubMed/NCBI | |
Cunnea P, Fernandes AP, Capitanio A, Eken S, Spyrou G and Björnstedt M: Increased expression of specific thioredoxin family proteins; a pilot immunohistochemical study on human hepatocellular carcinoma. Int J Immunopathol Pharmacol. 20:17–24. 2007.PubMed/NCBI | |
Li J, Cheng ZJ, Liu Y, Yan ZL, Wang K, Wu D, Wan XY, Xia Y, Lau WY, Wu MC, et al: Serum thioredoxin is a diagnostic marker for hepatocellular carcinoma. Oncotarget. 6:9551–9563. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yurchenko V, Constant S and Bukrinsky M: Dealing with the family: CD147 interactions with cyclophilins. Immunology. 117:301–309. 2006. View Article : Google Scholar : PubMed/NCBI | |
Weidle UH, Scheuer W, Eggle D, Klostermann S and Stockinger H: Cancer-related issues of CD147. Cancer Genomics Proteomics. 7:157–169. 2010.PubMed/NCBI | |
Xu J, Xu HY, Zhang Q, Song F, Jiang JL, Yang XM, Mi L, Wen N, Tian R, Wang L, et al: HAb18G/CD147 functions in invasion and metastasis of hepatocellular carcinoma. Mol Cancer Res. 5:605–614. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wu J, Song F, Tang J, Wang SJ, Yu XL, Chen ZN and Jiang JL: Extracellular membrane-proximal domain of HAb18G/CD147 binds to metal ion-dependent adhesion site (MIDAS) motif of integrin β1 to modulate malignant properties of hepatoma cells. J Biol Chem. 287:4759–4772. 2012. View Article : Google Scholar | |
Wu J, Hao ZW, Zhao YX, Yang XM, Tang H, Zhang X, Song F, Sun XX, Wang B, Nan G, et al: Full-length soluble CD147 promotes MMP-2 expression and is a potential serological marker in detection of hepatocellular carcinoma. J Transl Med. 12:1902014. View Article : Google Scholar : PubMed/NCBI | |
Bowen MA, Patel DD, Li X, Modrell B, Malacko AR, Wang WC, Marquardt H, Neubauer M, Pesando JM, Francke U, et al: Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J Exp Med. 181:2213–2220. 1995. View Article : Google Scholar : PubMed/NCBI | |
Weidle UH, Eggle D, Klostermann S and Swart GW: ALCAM/CD166: Cancer-related issues. Cancer Genomics Proteomics. 7:231–243. 2010.PubMed/NCBI | |
Ma L, Wang J, Lin J, Pan Q, Yu Y and Sun F: Cluster of differentiation 166 (CD166) regulated by phosphatidylinositide 3-kinase (PI3K)/AKT signaling to exert its anti-apoptotic role via yes-associated protein (YAP) in liver cancer. J Biol Chem. 289:6921–6933. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Lin J, Qiao Y, Weng W, Liu W, Wang J and Sun F: Serum CD166: A novel hepatocellular carcinoma tumor marker. Clin Chim Acta. 441:156–162. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nedvídková J, Nĕmec J, Stolba P, Vavrejnová V and Bednár J: Epidermal growth factor (EGF) in serum of patients with differentiated carcinoma of thyroids. Neoplasma. 39:11–14. 1992.PubMed/NCBI | |
Meggiato T, Plebani M, Basso D, Panozzo MP and Del Favero G: Serum growth factors in patients with pancreatic cancer. Tumour Biol. 20:65–71. 1999. View Article : Google Scholar : PubMed/NCBI | |
Konturek A, Barczyński M, Cichoń S, Pituch-Noworolska A, Jonkisz J and Cichoń W: Significance of vascular endothelial growth factor and epidermal growth factor in development of papillary thyroid cancer. Langenbecks Arch Surg. 390:216–221. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shehata F, Abdel Monem N, Sakr M, Kasem S and Balbaa M: Epidermal growth factor, its receptor and transforming growth factor-β1 in the diagnosis of HCV-induced hepatocellular carcinoma. Med Oncol. 30:6732013. View Article : Google Scholar | |
Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, He XY, Zhang HP, Donnellan M, Mahler S, Pryor K, et al: MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci USA. 94:11514–11519. 1997. View Article : Google Scholar : PubMed/NCBI | |
Fairlie WD, Zhang H, Brown PK, Russell PK, Bauskin AR and Breit SN: Expression of a TGF-beta superfamily protein, macrophage inhibitory cytokine-1, in the yeast Pichia pastoris. Gene. 254:67–76. 2000. View Article : Google Scholar : PubMed/NCBI | |
Corre J, Hébraud B and Bourin P: Concise review: growth differentiation factor 15 in pathology: a clinical role? Stem Cells Transl Med. 2:946–952. 2013. View Article : Google Scholar : PubMed/NCBI | |
Eling TE, Baek SJ, Shim M and Lee CH: NSAID activated gene (NAG-1), a modulator of tumorigenesis. J Biochem Mol Biol. 39:649–655. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Chi X, Gong Q, Gao L, Niu Y, Chi X, Cheng M, Si Y, Wang M, Zhong J, et al: Association of serum level of growth differentiation factor 15 with liver cirrhosis and hepatocellular carcinoma. PLoS One. 10:e01275182015. View Article : Google Scholar : PubMed/NCBI | |
Satoh T and Hosokawa M: Structure, function and regulation of carboxylesterases. Chem Biol Interact. 162:195–211. 2006. View Article : Google Scholar : PubMed/NCBI | |
Na K, Jeong SK, Lee MJ, Cho SY, Kim SA, Lee MJ, Song SY, Kim H, Kim KS, Lee HW, et al: Human liver carboxylesterase 1 outperforms alpha-fetoprotein as biomarker to discriminate hepatocellular carcinoma from other liver diseases in Korean patients. Int J Cancer. 133:408–415. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fell VL and Schild-Poulter C: The Ku heterodimer: Function in DNA repair and beyond. Mutat Res Rev Mutat Res. 763:15–29. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tong WM, Cortes U, Hande MP, Ohgaki H, Cavalli LR, Lansdorp PM, Haddad BR and Wang ZQ: Synergistic role of Ku80 and poly(ADP-ribose) polymerase in suppressing chromosomal aberrations and liver cancer formation. Cancer Res. 62:6990–6996. 2002.PubMed/NCBI | |
Nomura F, Sogawa K, Noda K, Seimiya M, Matsushita K, Miura T, Tomonaga T, Yoshitomi H, Imazeki F, Takizawa H, et al: Serum anti-Ku86 is a potential biomarker for early detection of hepatitis C virus-related hepatocellular carcinoma. Biochem Biophys Res Commun. 421:837–843. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lim JW, Kim H and Kim KH: Expression of Ku70 and Ku80 mediated by NF-kappa B and cyclooxygenase-2 is related to proliferation of human gastric cancer cells. J Biol Chem. 277:46093–46100. 2002. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Liu AJ, Gao YX, Hu MG, Zhao GD, Zhao ZM and Liu R: Expression of Ku86 and presence of Ku86 antibody as biomarkers of hepatitis B virus related hepatocellular carcinoma. Dig Dis Sci. 59:614–622. 2014. View Article : Google Scholar | |
Morén A, Olofsson A, Stenman G, Sahlin P, Kanzaki T, Claesson-Welsh L, ten Dijke P, Miyazono K and Heldin CH: Identification and characterization of LTBP-2, a novel latent transforming growth factor-beta-binding protein. J Biol Chem. 269:32469–32478. 1994.PubMed/NCBI | |
Saharinen J and Keski-Oja J: Specific sequence motif of 8-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta. Mol Biol Cell. 11:2691–2704. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chan SH, Yee Ko JM, Chan KW, Chan YP, Tao Q, Hyytiainen M, Keski-Oja J, Law S, Srivastava G, Tang J, et al: The ECM protein LTBP-2 is a suppressor of esophageal squamous cell carcinoma tumor formation but higher tumor expression associates with poor patient outcome. Int J Cancer. 129:565–573. 2011. View Article : Google Scholar | |
Vehviläinen P, Hyytiäinen M and Keski-Oja J: Latent transforming growth factor-beta-binding protein 2 is an adhesion protein for melanoma cells. J Biol Chem. 278:24705–24713. 2003. View Article : Google Scholar : PubMed/NCBI | |
Turtoi A, Musmeci D, Wang Y, Dumont B, Somja J, Bevilacqua G, De Pauw E, Delvenne P and Castronovo V: Identification of novel accessible proteins bearing diagnostic and therapeutic potential in human pancreatic ductal adenocarcinoma. J Proteome Res. 10:4302–4313. 2011. View Article : Google Scholar : PubMed/NCBI | |
da Costa AN, Plymoth A, Santos-Silva D, Ortiz-Cuaran S, Camey S, Guilloreau P, Sangrajrang S, Khuhaprema T, Mendy M, Lesi OA, et al: Osteopontin and latent-TGF β binding-protein 2 as potential diagnostic markers for HBV-related hepatocellular carcinoma. Int J Cancer. 136:172–181. 2015. View Article : Google Scholar | |
Lindner K, Gregán J, Montgomery S and Kearsey SE: Essential role of MCM proteins in premeiotic DNA replication. Mol Biol Cell. 13:435–444. 2002. View Article : Google Scholar : PubMed/NCBI | |
Blow JJ and Hodgson B: Replication licensing-defining the proliferative state? Trends Cell Biol. 12:72–78. 2002. View Article : Google Scholar : PubMed/NCBI | |
Davies RJ, Freeman A, Morris LS, Bingham S, Dilworth S, Scott I, Laskey RA, Miller R and Coleman N: Analysis of minichromosome maintenance proteins as a novel method for detection of colorectal cancer in stool. Lancet. 359:1917–1919. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ayaru L, Stoeber K, Webster GJ, Hatfield AR, Wollenschlaeger A, Okoturo O, Rashid M, Williams G and Pereira SP: Diagnosis of pancreaticobiliary malignancy by detection of minichromosome maintenance protein 5 in bile aspirates. Br J Cancer. 98:1548–1554. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gauchotte G, Vigouroux C, Rech F, Battaglia-Hsu SF, Soudant M, Pinelli C, Civit T, Taillandier L, Vignaud JM and Bressenot A: Expression of minichromosome maintenance MCM6 protein in meningiomas is strongly correlated with histologic grade and clinical outcome. Am J Surg Pathol. 36:283–291. 2012. View Article : Google Scholar | |
Zhou YM, Zhang XF, Cao L, Li B, Sui CJ, Li YM and Yin ZF: MCM7 expression predicts post-operative prognosis for hepatocellular carcinoma. Liver Int. 32:1505–1509. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zheng T, Chen M, Han S, Zhang L, Bai Y, Fang X, Ding SZ and Yang Y: Plasma minichromosome maintenance complex component 6 is a novel biomarker for hepatocellular carcinoma patients. Hepatol Res. 44:1347–1356. 2014. View Article : Google Scholar : PubMed/NCBI | |
Deshmane SL, Kremlev S, Amini S and Sawaya BE: Monocyte chemoattractant protein-1 (MCP-1): An overview. J Interferon Cytokine Res. 29:313–326. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sato K, Kuratsu J, Takeshima H, Yoshimura T and Ushio Y: Expression of monocyte chemoattractant protein-1 in meningioma. J Neurosurg. 82:874–878. 1995. View Article : Google Scholar : PubMed/NCBI | |
Ohta M, Kitadai Y, Tanaka S, Yoshihara M, Yasui W, Mukaida N, Haruma K and Chayama K: Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas. Int J Oncol. 22:773–778. 2003.PubMed/NCBI | |
Valković T, Dobrila F, Melato M, Sasso F, Rizzardi C and Jonjić N: Correlation between vascular endothelial growth factor, angiogenesis, and tumor-associated macrophages in invasive ductal breast carcinoma. Virchows Arch. 440:583–588. 2002. View Article : Google Scholar | |
Dagouassat M, Suffee N, Hlawaty H, Haddad O, Charni F, Laguillier C, Vassy R, Martin L, Schischmanoff PO, Gattegno L, et al: Monocyte chemoattractant protein-1 (MCP-1)/CCL2 secreted by hepatic myofibroblasts promotes migration and invasion of human hepatoma cells. Int J Cancer. 126:1095–1108. 2010. | |
Marra F, DeFranco R, Grappone C, Milani S, Pastacaldi S, Pinzani M, Romanelli RG, Laffi G and Gentilini P: Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: Correlation with monocyte infiltration. Am J Pathol. 152:423–430. 1998.PubMed/NCBI | |
Wang WW, Ang SF, Kumar R, Heah C, Utama A, Tania NP, Li H, Tan SH, Poo D, Choo SP, et al: Identification of serum monocyte chemoattractant protein-1 and prolactin as potential tumor markers in hepatocellular carcinoma. PLoS One. 8:e689042013. View Article : Google Scholar : PubMed/NCBI | |
Dietz KJ, Horling F, König J and Baier M: The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. J Exp Bot. 53:1321–1329. 2002. View Article : Google Scholar : PubMed/NCBI | |
Huh JY, Kim Y, Jeong J, Park J, Kim I, Huh KH, Kim YS, Woo HA, Rhee SG, Lee KJ, et al: Peroxiredoxin 3 is a key molecule regulating adipocyte oxidative stress, mitochondrial biogenesis, and adipokine expression. Antioxid Redox Signal. 16:229–243. 2012. View Article : Google Scholar : | |
Qiao B, Wang J, Xie J, Niu Y, Ye S, Wan Q and Ye Q: Detection and identification of peroxiredoxin 3 as a biomarker in hepatocellular carcinoma by a proteomic approach. Int J Mol Med. 29:832–840. 2012.PubMed/NCBI | |
Shi L, Wu LL, Yang JR, Chen XF, Zhang Y, Chen ZQ, Liu CL, Chi SY, Zheng JY, Huang HX, et al: Serum peroxiredoxin3 is a useful biomarker for early diagnosis and assessment of prognosis of hepatocellular carcinoma in Chinese patients. Asian Pac J Cancer Prev. 15:2979–2986. 2014. View Article : Google Scholar | |
Horwitz A, Duggan K, Buck C, Beckerle MC and Burridge K: Interaction of plasma membrane fibronectin receptor with talin-a transmembrane linkage. Nature. 320:531–533. 1986. View Article : Google Scholar : PubMed/NCBI | |
Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM, Ginsberg MH and Calderwood DA: Talin binding to integrin beta tails: A final common step in integrin activation. Science. 302:103–106. 2003. View Article : Google Scholar : PubMed/NCBI | |
Slater M, Cooper M and Murphy CR: The cytoskeletal proteins alpha-actinin, Ezrin, and talin are de-expressed in endometriosis and endometrioid carcinoma compared with normal uterine epithelium. Appl Immunohistochem Mol Morphol. 15:170–174. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sakamoto S, McCann RO, Dhir R and Kyprianou N: Talin1 promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. Cancer Res. 70:1885–1895. 2010. View Article : Google Scholar : PubMed/NCBI | |
Youns MM, Abdel Wahab AH, Hassan ZA and Attia MS: Serum talin-1 is a potential novel biomarker for diagnosis of hepatocellular carcinoma in Egyptian patients. Asian Pac J Cancer Prev. 14:3819–3823. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kohno K, Izumi H, Uchiumi T, Ashizuka M and Kuwano M: The pleiotropic functions of the Y-box-binding protein, YB-1. BioEssays. 25:691–698. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kuwano M, Oda Y, Izumi H, Yang SJ, Uchiumi T, Iwamoto Y, Toi M, Fujii T, Yamana H, Kinoshita H, et al: The role of nuclear Y-box binding protein 1 as a global marker in drug resistance. Mol Cancer Ther. 3:1485–1492. 2004.PubMed/NCBI | |
Frye BC, Halfter S, Djudjaj S, Muehlenberg P, Weber S, Raffetseder U, En-Nia A, Knott H, Baron JM, Dooley S, et al: Y-box protein-1 is actively secreted through a non-classical pathway and acts as an extracellular mitogen. EMBO Rep. 10:783–789. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pu L, Jing S, Bianqin G, Ping L, Qindong L, Chenggui L, Feng C, Wenbin K, Qin W, Jinyu D, et al: Development of a chemiluminescence immunoassay for serum YB-1 and its clinical application as a potential diagnostic marker for hepatocellular carcinoma. Hepat Mon. 13:e89182013. View Article : Google Scholar : PubMed/NCBI | |
Comunale MA, Wang M, Hafner J, Krakover J, Rodemich L, Kopenhaver B, Long RE, Junaidi O, Bisceglie AM, Block TM, et al: Identification and development of fucosylated glycoproteins as biomarkers of primary hepatocellular carcinoma. J Proteome Res. 8:595–602. 2009. View Article : Google Scholar | |
Na K, Lee EY, Lee HJ, Kim KY, Lee H, Jeong SK, Jeong AS, Cho SY, Kim SA, Song SY, et al: Human plasma carboxylesterase 1, a novel serologic biomarker candidate for hepatocellular carcinoma. Proteomics. 9:3989–3999. 2009. View Article : Google Scholar : PubMed/NCBI | |
Qi YJ, Ward DG, Pang C, Wang QM, Wei W, Ma J, Zhang J, Lou Q, Shimwell NJ, Martin A, et al: Proteomic profiling of N-linked glycoproteins identifies ConA-binding procathepsin D as a novel serum biomarker for hepatocellular carcinoma. Proteomics. 14:186–195. 2014. View Article : Google Scholar | |
Costa LG, Cole TB, Vitalone A and Furlong CE: Measurement of paraoxonase (PON1) status as a potential biomarker of susceptibility to organophosphate toxicity. Clin Chim Acta. 352:37–47. 2005. View Article : Google Scholar : PubMed/NCBI | |
Goswami B, Tayal D, Gupta N and Mallika V: Paraoxonase: A multifaceted biomolecule. Clin Chim Acta. 410:1–12. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Wang Y, Liu S, Ding G, Liu W, Zhou J, Kuang M, Ji Y, Kondo T and Fan J: Quantitative proteomic analysis identified paraoxonase 1 as a novel serum biomarker for microvascular invasion in hepatocellular carcinoma. J Proteome Res. 12:1838–1846. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Jiang K, Zhang Q, Guo K and Liu Y: Serum fucosylated paraoxonase 1 as a potential glycobiomarker for clinical diagnosis of early hepatocellular carcinoma using ELISA Index. Glycoconj J. 32:119–125. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chisaka O and Capecchi MR: Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature. 350:473–479. 1991. View Article : Google Scholar : PubMed/NCBI | |
Argiropoulos B and Humphries RK: Hox genes in hematopoiesis and leukemogenesis. Oncogene. 26:6766–6776. 2007. View Article : Google Scholar : PubMed/NCBI | |
So CW, Karsunky H, Wong P, Weissman IL and Cleary ML: Leukemic transformation of hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. Blood. 103:3192–3199. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bhatlekar S, Fields JZ and Boman BM: HOX genes and their role in the development of human cancers. J Mol Med Berl. 92:811–823. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kuo CC, Lin CY, Shih YL, Hsieh CB, Lin PY, Guan SB, Hsieh MS, Lai HC, Chen CJ and Lin YW: Frequent methylation of HOXA9 gene in tumor tissues and plasma samples from human hepatocellular carcinomas. Clin Chem Lab Med. 52:1235–1245. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li J, Poi MJ and Tsai MD: Regulatory mechanisms of tumor suppressor P16INK4A and their relevance to cancer. Biochemistry. 50:5566–5582. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zang JJ, Xie F, Xu JF, Qin YY, Shen RX, Yang JM and He J: P16 gene hypermethylation and hepatocellular carcinoma: A systematic review and meta-analysis. World J Gastroenterol. 17:3043–3048. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Krocker JD, Kirk JL, Merwat SN, Ju H, Soloway RD, Wieck LR, Li A, Okorodudu AO, Petersen JR, et al: Evaluation of INK4A promoter methylation using pyrosequencing and circulating cell-free DNA from patients with hepatocellular carcinoma. Clin Chem Lab Med. 52:899–909. 2014. View Article : Google Scholar : PubMed/NCBI | |
Berindan-Neagoe I, Monroig PC, Pasculli B and Calin GA: MicroRNAome genome: A treasure for cancer diagnosis and therapy. CA Cancer J Clin. 64:311–336. 2014. View Article : Google Scholar : PubMed/NCBI | |
Giordano S and Columbano A: MicroRNAs: New tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology. 57:840–847. 2013. View Article : Google Scholar | |
Tutar L, Tutar E and Tutar Y: MicroRNAs and cancer; an overview. Curr Pharm Biotechnol. 15:430–437. 2014. View Article : Google Scholar : PubMed/NCBI | |
Anwar SL and Lehmann U: MicroRNAs: Emerging novel clinical biomarkers for hepatocellular carcinomas. J Clin Med. 4:1631–1650. 2015. View Article : Google Scholar : PubMed/NCBI | |
Qiu G, Lin Y, Zhang H and Wu D: miR-139-5p inhibits epithelial-mesenchymal transition, migration and invasion of hepatocellular carcinoma cells by targeting ZEB1 and ZEB2. Biochem Biophys Res Commun. 463:315–321. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wong CC, Wong CM, Tung EK, Au SL, Lee JM, Poon RT, Man K and Ng IO: The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by downregulating Rho-kinase 2. Gastroenterology. 140:322–331. 2011. View Article : Google Scholar | |
Gu W, Li X and Wang J: miR-139 regulates the proliferation and invasion of hepatocellular carcinoma through the WNT/TCF-4 pathway. Oncol Rep. 31:397–404. 2014. | |
Li T, Yin J, Yuan L, Wang S, Yang L, Du X and Lu J: Downregulation of microRNA-139 is associated with hepatocellular carcinoma risk and short-term survival. Oncol Rep. 31:1699–1706. 2014.PubMed/NCBI | |
Xu S, Witmer PD, Lumayag S, Kovacs B and Valle D: MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem. 282:25053–25066. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wei Q, Lei R and Hu G: Roles of miR-182 in sensory organ development and cancer. Thorac Cancer. 6:2–9. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang QH, Sun HM, Zheng RZ, Li YC, Zhang Q, Cheng P, Tang ZH and Huang F: Meta-analysis of microRNA-183 family expression in human cancer studies comparing cancer tissues with noncancerous tissues. Gene. 527:26–32. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qin J, Luo M, Qian H and Chen W: Upregulated miR-182 increases drug resistance in cisplatin-treated HCC cell by regulating TP53INP1. Gene. 538:342–347. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang TH, Yeh CT, Ho JY, Ng KF and Chen TC: OncomiR miR-96 and miR-182 promote cell proliferation and invasion through targeting ephrinA5 in hepatocellular carcinoma. Mol Carcinog. 55:366–375. 2016. View Article : Google Scholar | |
Chen L, Chu F, Cao Y, Shao J and Wang F: Serum miR-182 and miR-331-3p as diagnostic and prognostic markers in patients with hepatocellular carcinoma. Tumour Biol. 36:7439–7447. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zanette DL, Rivadavia F, Molfetta GA, Barbuzano FG, Proto-Siqueira R, Silva-Jr WA, Falcão RP and Zago MA: miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res. 40:1435–1440. 2007. View Article : Google Scholar : PubMed/NCBI | |
Epis MR, Giles KM, Barker A, Kendrick TS and Leedman PJ: miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem. 284:24696–24704. 2009. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Guo L, Ji J, Zhang J, Zhang J, Chen X, Cai Q, Li J, Gu Q, Liu B, et al: miRNA-331-3p directly targets E2F1 and induces growth arrest in human gastric cancer. Biochem Biophys Res Commun. 398:1–6. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nymark P, Guled M, Borze I, Faisal A, Lahti L, Salmenkivi K, Kettunen E, Anttila S and Knuutila S: Integrative analysis of microRNA, mRNA and aCGH data reveals asbestos- and histology-related changes in lung cancer. Genes Chromosomes Cancer. 50:585–597. 2011. View Article : Google Scholar : PubMed/NCBI | |
Epis MR, Giles KM, Candy PA, Webster RJ and Leedman PJ: miR-331-3p regulates expression of neuropilin-2 in glioblastoma. J Neurooncol. 116:67–75. 2014. View Article : Google Scholar : | |
Leivonen SK, Sahlberg KK, Mäkelä R, Due EU, Kallioniemi O, Børresen-Dale AL and Perälä M: High-throughput screens identify microRNAs essential for HER2 positive breast cancer cell growth. Mol Oncol. 8:93–104. 2014. View Article : Google Scholar | |
Sukata T, Sumida K, Kushida M, Ogata K, Miyata K, Yabushita S and Uwagawa S: Circulating microRNAs, possible indicators of progress of rat hepatocarcinogenesis from early stages. Toxicol Lett. 200:46–52. 2011. View Article : Google Scholar | |
Chang RM, Yang H, Fang F, Xu JF and Yang LY: MicroRNA-331-3p promotes proliferation and metastasis of hepatocellular carcinoma by targeting PH domain and leucine-rich repeat protein phosphatase. Hepatology. 60:1251–1263. 2014. View Article : Google Scholar : PubMed/NCBI | |
Marchini S, Cavalieri D, Fruscio R, Calura E, Garavaglia D, Fuso Nerini I, Mangioni C, Cattoretti G, Clivio L, Beltrame L, et al: Association between miR-200c and the survival of patients with stage I epithelial ovarian cancer: A retrospective study of two independent tumour tissue collections. Lancet Oncol. 12:273–285. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bockmeyer CL, Christgen M, Müller M, Fischer S, Ahrens P, Länger F, Kreipe H and Lehmann U: MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes. Breast Cancer Res Treat. 130:735–745. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wan D, He S, Xie B, Xu G, Gu W, Shen C, Hu Y, Wang X, Zhi Q and Wang L: Aberrant expression of miR-199a-3p and its clinical significance in colorectal cancers. Med Oncol. 30:3782013. View Article : Google Scholar : PubMed/NCBI | |
Tian R, Xie X, Han J, Luo C, Yong B, Peng H, Shen J and Peng T: miR-199a-3p negatively regulates the progression of osteosarcoma through targeting AXL. Am J Cancer Res. 4:738–750. 2014.PubMed/NCBI | |
Zhao X, He L, Li T, Lu Y, Miao Y, Liang S, Guo H, Bai M, Xie H, Luo G, et al: SRF expedites metastasis and modulates the epithelial to mesenchymal transition by regulating miR-199a-5p expression in human gastric cancer. Cell Death Differ. 21:1900–1913. 2014. View Article : Google Scholar : PubMed/NCBI | |
Feber A, Xi L, Pennathur A, Gooding WE, Bandla S, Wu M, Luketich JD, Godfrey TE and Litle VR: MicroRNA prognostic signature for nodal metastases and survival in esophageal adenocarcinoma. Ann Thorac Surg. 91:1523–1530. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nonaka R, Nishimura J, Kagawa Y, Osawa H, Hasegawa J, Murata K, Okamura S, Ota H, Uemura M, Hata T, et al: Circulating miR-199a-3p as a novel serum biomarker for colorectal cancer. Oncol Rep. 32:2354–2358. 2014.PubMed/NCBI | |
Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL, Pollutri D, Croce CM, Bolondi L and Gramantieri L: MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 70:5184–5193. 2010. View Article : Google Scholar : PubMed/NCBI | |
Henry JC, Park JK, Jiang J, Kim JH, Nagorney DM, Roberts LR, Banerjee S and Schmittgen TD: miR-199a-3p targets CD44 and reduces proliferation of CD44 positive hepatocellular carcinoma cell lines. Biochem Biophys Res Commun. 403:120–125. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yin J, Hou P, Wu Z, Wang T and Nie Y: Circulating miR-375 and miR-199a-3p as potential biomarkers for the diagnosis of hepatocellular carcinoma. Tumour Biol. 36:4501–4507. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nault JC: Pathogenesis of hepatocellular carcinoma according to aetiology. Best Pract Res Clin Gastroenterol. 28:937–947. 2014. View Article : Google Scholar : PubMed/NCBI | |
El-Serag HB and Rudolph KL: Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology. 132:2557–2576. 2007. View Article : Google Scholar : PubMed/NCBI | |
Forner A, Gilabert M, Bruix J and Raoul JL: Treatment of intermediate-stage hepatocellular carcinoma. Nat Rev Clin Oncol. 11:525–535. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ryu M, Shimamura Y, Kinoshita T, Konishi M, Kawano N, Iwasaki M, Furuse J, Yoshino M, Moriyama N and Sugita M: Therapeutic results of resection, transcatheter arterial emboli-zation and percutaneous transhepatic ethanol injection in 3225 patients with hepatocellular carcinoma: A retrospective multi-center study. Jpn J Clin Oncol. 27:251–257. 1997. View Article : Google Scholar : PubMed/NCBI | |
Livraghi T, Meloni F, Di Stasi M, Rolle E, Solbiati L, Tinelli C and Rossi S: Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice? Hepatology. 47:82–89. 2008. View Article : Google Scholar | |
Wang K, Yuan Y, Cho JH, McClarty S, Baxter D and Galas DJ: Comparing the MicroRNA spectrum between serum and plasma. PLoS One. 7:e415612012. View Article : Google Scholar : PubMed/NCBI | |
Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD and Remaley AT: MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 13:423–433. 2011. View Article : Google Scholar : PubMed/NCBI | |
Moldovan L, Batte KE, Trgovcich J, Wisler J, Marsh CB and Piper M: Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med. 18:371–390. 2014. View Article : Google Scholar : PubMed/NCBI | |
Peltier HJ and Latham GJ: Normalization of microRNA expression levels in quantitative RT-PCR assays: Identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA. 14:844–852. 2008. View Article : Google Scholar : PubMed/NCBI | |
Qu Z, Jiang C, Wu J and Ding Y: Exosomes as potent regulators of HCC malignancy and potential bio-tools in clinical application. Int J Clin Exp Med. 8:17088–17095. 2015. | |
Xiao D, Ohlendorf J, Chen Y, Taylor DD, Rai SN, Waigel S, Zacharias W, Hao H and McMasters KM: Identifying mRNA, microRNA and protein profiles of melanoma exosomes. PLoS One. 7:e468742012. View Article : Google Scholar : PubMed/NCBI | |
Harding C and Stahl P: Transferrin recycling in reticulocytes: pH and iron are important determinants of ligand binding and processing. Biochem Biophys Res Commun. 113:650–658. 1983. View Article : Google Scholar : PubMed/NCBI | |
Liu WH, Ren LN, Wang X, Wang T, Zhang N, Gao Y, Luo H, Navarro-Alvarez N and Tang LJ: Combination of exosomes and circulating microRNAs may serve as a promising tumor marker complementary to alpha-fetoprotein for early-stage hepatocellular carcinoma diagnosis in rats. J Cancer Res Clin Oncol. 141:1767–1778. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Hou L, Li A, Duan Y, Gao H and Song X: Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma. BioMed Res Int. 2014:8648942014. View Article : Google Scholar : PubMed/NCBI | |
Liu YR, Tang RX, Huang WT, Ren FH, He RQ, Yang LH, Luo DZ, Dang YW and Chen G: Long noncoding RNAs in hepatocellular carcinoma: Novel insights into their mechanism. World J Hepatol. 7:2781–2791. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kamel MM, Matboli M, Sallam M, Montasser IF, Saad AS and El-Tawdi AH: Investigation of long noncoding RNAs expression profile as potential serum biomarkers in patients with hepatocellular carcinoma. Transl Res. 168:134–145. 2016. View Article : Google Scholar |