1
|
Leusink FK, van Es RJ, de Bree R,
Baatenburg de Jong RJ, van Hooff SR, Holstege FC, Slootweg PJ,
Brakenhoff RH and Takes RP: Novel diagnostic modalities for
assessment of the clinically node-negative neck in oral
squamous-cell carcinoma. Lancet Oncol. 13:e554–e561. 2012.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Benfey PN: Molecular biology: microRNA is
here to stay. Nature. 425:244–245. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Park K and Kim KB: miRTar Hunter: A
prediction system for identifying human microRNA target sites. Mol
Cells. 35:195–201. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sudol M: YAP1 oncogene and its eight
isoforms. Oncogene. 32:39222013. View Article : Google Scholar
|
5
|
Sleeman JP and Thiery JP: SnapShot: The
epithelial-mesenchymal transition. Cell. 145:162.e12011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sánchez-Tilló E, Liu Y, de Barrios O,
Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A
and Postigo A: EMT-activating transcription factors in cancer:
Beyond EMT and tumor invasiveness. Cell Mol Life Sci. 69:3429–3456.
2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li J, Wang Q, Wen R, Liang J, Zhong X,
Yang W, Su D and Tang J: miR-138 inhibits cell proliferation and
reverses epithelial-mesenchymal transition in non-small cell lung
cancer cells by targeting GIT1 and SEMA4C. J Cell Mol Med.
19:2793–2805. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang L, Yang J, Li J, Shen X, Le Y, Zhou
C, Wang S, Zhang S, Xu D and Gong Z: MircoRNA-33a inhibits
epithelial-to-mesenchymal transition and metastasis and could be a
prognostic marker in non-small cell lung cancer. Sci Rep.
5:136772015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Qu MH, Han C, Srivastava AK, Cui T, Zou N,
Gao ZQ and Wang QE: miR-93 promotes TGF-β-induced
epithelial-to-mesenchymal transition through downregulation of
NEDD4L in lung cancer cells. Tumour Biol. Nov 18–2015.Epub ahead of
print.
|
10
|
Vuoriluoto K, Haugen H, Kiviluoto S,
Mpindi JP, Nevo J, Gjerdrum C, Tiron C, Lorens JB and Ivaska J:
Vimentin regulates EMT induction by Slug and oncogenic H-Ras and
migration by governing Axl expression in breast cancer. Oncogene.
30:1436–1448. 2011. View Article : Google Scholar
|
11
|
Naber HP, Drabsch Y, Snaar-Jagalska BE,
ten Dijke P and van Laar T: Snail and Slug, key regulators of
TGF-β-induced EMT, are sufficient for the induction of single-cell
invasion. Biochem Biophys Res Commun. 435:58–63. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Smit MA and Peeper DS: Deregulating EMT
and senescence: Double impact by a single twist. Cancer Cell.
14:5–7. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bora-Singhal N, Nguyen J, Schaal C,
Perumal D, Singh S, Coppola D and Chellappan S: YAP1 regulates OCT4
activity and SOX2 expression to facilitate self-renewal and
vascular mimicry of stem-like cells. Stem Cells. 33:1705–1718.
2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li X, Xu Y, Chen Y, Chen S, Jia X, Sun T,
Liu Y, Li X, Xiang R and Li N: SOX2 promotes tumor metastasis by
stimulating epithelial-to-mesenchymal transition via regulation of
WNT/β-catenin signal network. Cancer Lett. 336:379–389. 2013.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Choi HJ, Park KJ, Shin JS, Roh MS, Kwon HC
and Lee HS: Tumor budding as a prognostic marker in stage-III
rectal carcinoma. Int J Colorectal Dis. 22:863–868. 2007.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Xu P, Li Y, Yang S, Yang H, Tang J and Li
M: Micro-ribonucleic acid 143 (miR-143) inhibits oral squamous cell
carcinoma (OSCC) cell migration and invasion by downregulation of
phospho-c-Met through targeting CD44 v3. Oral Surg Oral Med Oral
Pathol Oral Radiol. 120:43–51. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang HP, Wang YH, Cao CJ, Yang XM, Ma SC,
Han XB, Yang XL, Yang AN, Tian J, Xu H, et al: A regulatory circuit
involving miR-143 and DNMT3a mediates vascular smooth muscle cell
proliferation induced by homocysteine. Mol Med Rep. 13:483–490.
2016.
|
18
|
Zhang X, Zheng L, Sun Y, Wang T and Wang
B: Tangeretin enhances radiosensitivity and inhibits the
radiation-induced epithelial-mesenchymal transition of gastric
cancer cells. Oncol Rep. 34:302–310. 2015.PubMed/NCBI
|
19
|
Chaw SY, Majeed AA, Dalley AJ, Chan A,
Stein S and Farah CS: Epithelial to mesenchymal transition (EMT)
biomarkers -E-cadherin, beta-catenin, APC and vimentin - in oral
squamous cell carcinogenesis and transformation. Oral Oncol.
48:997–1006. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gill JG, Langer EM, Lindsley RC, Cai M,
Murphy TL, Kyba M and Murphy KM: Snail and the microRNA-200 family
act in opposition to regulate epithelial-to-mesenchymal transition
and germ layer fate restriction in differentiating ESCs. Stem
Cells. 29:764–776. 2011. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Kong D, Li Y, Wang Z, Banerjee S, Ahmad A,
Kim HR and Sarkar FH: miR-200 regulates PDGF-D-mediated
epithelial-mesenchymal transition, adhesion, and invasion of
prostate cancer cells. Stem Cells. 27:1712–1721. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Keren-Paz A, Emmanuel R and Samuels Y: YAP
and the drug resistance highway. Nat Genet. 47:193–194. 2015.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Cottini F, Hideshima T, Xu C, Sattler M,
Dori M, Agnelli L, ten Hacken E, Bertilaccio MT, Antonini E, Neri
A, et al: Rescue of Hippo coactivator YAP1 triggers DNA
damage-induced apoptosis in hematological cancers. Nat Med.
20:599–606. 2014. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Wu F, Ye X, Wang P, Jung K, Wu C, Douglas
D, Kneteman N, Bigras G, Ma Y and Lai R: Sox2 suppresses the
invasiveness of breast cancer cells via a mechanism that is
dependent on Twist1 and the status of Sox2 transcription activity.
BMC Cancer. 13:3172013. View Article : Google Scholar : PubMed/NCBI
|