Regulation of the miRNA expression by TEL/AML1, BCR/ABL, MLL/AF4 and TCF3/PBX1 oncoproteins in acute lymphoblastic leukemia (Review)
- Authors:
- Jorge Organista-Nava
- Yazmín Gómez-Gómez
- Berenice Illades-Aguiar
- Marco Antonio Leyva-Vázquez
-
Affiliations: Institute of Cellular Physiology, National Autonomous University of Mexico (UNAM), University City, D.F., Mexico, Laboratory of Molecular Biomedicine, School of Chemical-Biological Sciences, Guerrero State University, Chilpancingo, Guerrero, Mexico - Published online on: July 19, 2016 https://doi.org/10.3892/or.2016.4948
- Pages: 1226-1232
This article is mentioned in:
Abstract
Cartwright RA, Alexander FE, McKinney PA and Ricketts TJ: Leukaemia and lymphoma. An atlas of distribution within areas of England and Wales 1984–1988. Stat Med. 11:135–136. 1992. | |
Graubert TA and Mardis ER: Genomics of acute myeloid leukemia. Cancer J. 17:487–491. 2011. View Article : Google Scholar : PubMed/NCBI | |
Greaves M: Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer. 6:193–203. 2006. View Article : Google Scholar : PubMed/NCBI | |
Greaves MF: Aetiology of acute leukaemia. Lancet. 349:344–349. 1997. View Article : Google Scholar : PubMed/NCBI | |
Miller DR and Miller LP: Acute lymphoblastic leukemia in children: An update of clinical, biological, and therapeutic aspects. Crit Rev Oncol Hematol. 10:131–164. 1990. View Article : Google Scholar : PubMed/NCBI | |
Redaelli A, Laskin BL, Stephens JM, Botteman MF and Pashos CL: A systematic literature review of the clinical and epidemiological burden of acute lymphoblastic leukaemia (ALL). Eur J Cancer Care (Engl). 14:53–62. 2005. View Article : Google Scholar | |
Linabery AM and Ross JA: Trends in childhood cancer incidence in the U.S. (1992–2004). Cancer. 112:416–432. 2008. View Article : Google Scholar | |
Howard SC, Metzger ML, Wilimas JA, Quintana Y, Pui CH, Robison LL and Ribeiro RC: Childhood cancer epidemiology in low-income countries. Cancer. 112:461–472. 2008. View Article : Google Scholar | |
Deschler B and Lübbert M: Acute myeloid leukemia: Epidemiology and etiology. Cancer. 107:2099–2107. 2006. View Article : Google Scholar : PubMed/NCBI | |
Look AT: Oncogenic transcription factors in the human acute leukemias. Science. 278:1059–1064. 1997. View Article : Google Scholar : PubMed/NCBI | |
Pui C-H and Jeha S: New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat Rev Drug Discov. 6:149–165. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rowley JD: Chromosome translocations: Dangerous liaisons revisited. Nat Rev Cancer. 1:245–250. 2001. View Article : Google Scholar | |
Haferlach T, Bacher U, Kern W, Schnittger S and Haferlach C: Diagnostic pathways in acute leukemias: A proposal for a multimodal approach. Ann Hematol. 86:311–327. 2007. View Article : Google Scholar : PubMed/NCBI | |
Armstrong SA and Look AT: Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol. 23:6306–6315. 2005. View Article : Google Scholar : PubMed/NCBI | |
Steven HS, Swerdlow EC, Harris NL, et al: International WHO classification of tumours of haematopoietic and lymphoid tissues. Agency for Research on Cancer; Lyon: pp. 274–288. 2008 | |
Löwenberg B, Downing JR and Burnett A: Acute myeloid leukemia. N Engl J Med. 341:1051–1062. 1999. View Article : Google Scholar : PubMed/NCBI | |
Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, et al: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science. 286:531–537. 1999. View Article : Google Scholar : PubMed/NCBI | |
Mi S, Lu J, Sun M, Li Z, Zhang H, Neilly MB, Wang Y, Qian Z, Jin J, Zhang Y, et al: MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA. 104:19971–19976. 2007. View Article : Google Scholar : PubMed/NCBI | |
Iwasaki H and Akashi K: Hematopoietic developmental pathways: On cellular basis. Oncogene. 26:6687–6696. 2007. View Article : Google Scholar : PubMed/NCBI | |
Doulatov S, Notta F, Laurenti E and Dick JE: Hematopoiesis: A human perspective. Cell Stem Cell. 10:120–136. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sun K and Lai EC: Adult-specific functions of animal microRNAs. Nat Rev Genet. 14:535–548. 2013. View Article : Google Scholar : PubMed/NCBI | |
Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, et al: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jamil A, Theil KS, Kahwash S, Ruymann FB and Klopfenstein KJ: TEL/AML-1 fusion gene. its frequency and prognostic significance in childhood acute lymphoblastic leukemia. Cancer Genet Cytogenet. 122:73–78. 2000. View Article : Google Scholar : PubMed/NCBI | |
Golub TR, McLean T, Stegmaier K, Carroll M, Tomasson M and Gilliland DG: The TEL gene and human leukemia. Biochim Biophys Acta. 1288:M7–M10. 1996.PubMed/NCBI | |
Lorsbach RB and Downing JR: The role of the AML1 transcription factor in leukemogenesis. Int J Hematol. 74:258–265. 2001. View Article : Google Scholar : PubMed/NCBI | |
Krug U, Ganser A and Koeffler HP: Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene. 21:3475–3495. 2002. View Article : Google Scholar : PubMed/NCBI | |
Schotte D, De Menezes RX, Akbari Moqadam F, Khankahdani LM, Lange-Turenhout E, Chen C, Pieters R and Den Boer ML: MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica. 96:703–711. 2011. View Article : Google Scholar : PubMed/NCBI | |
Diakos C, Zhong S, Xiao Y, Zhou M, Vasconcelos GM, Krapf G, Yeh RF, Zheng S, Kang M, Wiencke JK, et al: TEL-AML1 regulation of survivin and apoptosis via miRNA-494 and miRNA-320a. Blood. 116:4885–4893. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gefen N, Binder V, Zaliova M, Linka Y, Morrow M, Novosel A, Edry L, Hertzberg L, Shomron N, Williams O, et al: Hsa-mir-125b-2 is highly expressed in childhood ETV6/RUNX1 (TEL/AML1) leukemias and confers survival advantage to growth inhibitory signals independent of p53. Leukemia. 24:89–96. 2010. View Article : Google Scholar : | |
Zelent A, Greaves M and Enver T: Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene. 23:4275–4283. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bousquet M, Harris MH, Zhou B and Lodish HF: MicroRNA miR-125b causes leukemia. Proc Natl Acad Sci USA. 107:21558–21563. 2010. View Article : Google Scholar : PubMed/NCBI | |
Faber J, Gregory RI and Armstrong SA: Linking miRNA regulation to BCR-ABL expression: The next dimension. Cancer Cell. 13:467–469. 2008. View Article : Google Scholar : PubMed/NCBI | |
Scherr M, Elder A, Battmer K, Barzan D, Bomken S, Ricke-Hoch M, Schröder A, Venturini L, Blair HJ, Vormoor J, et al: Differential expression of miR-17~92 identifies BCL2 as a therapeutic target in BCR-ABL-positive B-lineage acute lymphoblastic leukemia. Leukemia. 28:554–565. 2014. View Article : Google Scholar | |
Nieborowska-Skorska M, Hoser G, Kossev P, Wasik MA and Skorski T: Complementary functions of the antiapoptotic protein A1 and serine/threonine kinase pim-1 in the BCR/ABL-mediated leukemogenesis. Blood. 99:4531–4539. 2002. View Article : Google Scholar : PubMed/NCBI | |
Thomas M, Lange-Grünweller K, Hartmann D, Golde L, Schlereth J, Streng D, Aigner A, Grünweller A and Hartmann RK: Analysis of transcriptional regulation of the human miR-17-92 cluster; evidence for involvement of Pim-1. Int J Mol Sci. 14:12273–12296. 2013. View Article : Google Scholar : PubMed/NCBI | |
Eiring AM, Neviani P, Santhanam R, Oaks JJ, Chang JS, Notari M, Willis W, Gambacorti-Passerini C, Volinia S, Marcucci G, et al: Identification of novel posttranscriptional targets of the BCR/ABL oncoprotein by ribonomics: Requirement of E2F3 for BCR/ABL leukemogenesis. Blood. 111:816–828. 2008. View Article : Google Scholar | |
Mogilyansky E and Rigoutsos I: The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 20:1603–1614. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jiang N, Koh GS, Lim JY, Kham SK, Ariffin H, Chew FT and Yeoh AE: BIM is a prognostic biomarker for early prednisolone response in pediatric acute lymphoblastic leukemia. Exp Hematol. 39:321–329. 329.e1–329.e3. 2011. View Article : Google Scholar | |
Deininger MW, Vieira SA, Parada Y, Banerji L, Lam EW, Peters G, Mahon FX, Köhler T, Goldman JM and Melo JV: Direct relation between BCR-ABL tyrosine kinase activity and cyclin D2 expression in lymphoblasts. Cancer Res. 61:8005–8013. 2001.PubMed/NCBI | |
Parada Y, Banerji L, Glassford J, Lea NC, Collado M, Rivas C, Lewis JL, Gordon MY, Thomas NS and Lam EW: BCR-ABL and interleukin 3 promote haematopoietic cell proliferation and survival through modulation of cyclin D2 and p27Kip1 expression. J Biol Chem. 276:23572–23580. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yu X-F, Zou J, Bao Z-J and Dong J: miR-93 suppresses proliferation and colony formation of human colon cancer stem cells. World J Gastroenterol. 17:4711–4717. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ohtsubo M and Roberts JM: Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science. 259:1908–1912. 1993. View Article : Google Scholar : PubMed/NCBI | |
Johansson B, Moorman AV, Haas OA, Watmore AE, Cheung KL, Swanton S and Secker-Walker LM: Hematologic malignancies with t(4;11)(q21;q23) - a cytogenetic, morphologic, immunophenotypic and clinical study of 183 cases. European 11q23 Workshop participants. Leukemia. 12:779–787. 1998. View Article : Google Scholar : PubMed/NCBI | |
Behm FG, Raimondi SC, Frestedt JL, Liu Q, Crist WM, Downing JR, Rivera GK, Kersey JH and Pui CH: Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood. 87:2870–2877. 1996.PubMed/NCBI | |
Tamai H and Inokuchi K: 11q23/MLL acute leukemia: Update of clinical aspects. J Clin Exp Hematop. 50:91–98. 2010. View Article : Google Scholar | |
Dou L, Zheng D, Li J, Li Y, Gao L, Wang L and Yu L: Methylation-mediated repression of microRNA-143 enhances MLL-AF4 oncogene expression. Oncogene. 31:507–517. 2012. View Article : Google Scholar | |
de Oliveira JC, Scrideli CA, Brassesco MS, Morales AG, Pezuk JA, Queiroz RP, Yunes JA, Brandalise SR and Tone LG: Differential miRNA expression in childhood acute lymphoblastic leukemia and association with clinical and biological features. Leuk Res. 36:293–298. 2012. View Article : Google Scholar | |
Urtishak KA, Li-San W, Teachey DT, Sarah TK, Barrett JS, Chen I-ML, Atlas SR, Harvey RC, Heerema NA, Carroll AJ, et al: PI3K/AKT/mTOR signaling is a significant druggable pathway in infant acute lymphoblastic leukemia. Blood. 122:16692013. | |
Noguchi S, Mori T, Hoshino Y, Maruo K, Yamada N, Kitade Y, Naoe T and Akao Y: MicroRNA-143 functions as a tumor suppressor in human bladder cancer T24 cells. Cancer Lett. 307:211–220. 2011. View Article : Google Scholar : PubMed/NCBI | |
Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ, Erfurth FE, Eaton K, Lu J, Grimes HL, et al: Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood. 113:3314–3322. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Huang H, Chen P, He M, Li Y, Arnovitz S, Jiang X, He C, Hyjek E, Zhang J, et al: miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia. Nat Commun. 3:6882012. View Article : Google Scholar : PubMed/NCBI | |
Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M, Hase A, Seto Y and Nagata S: The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 66:233–243. 1991. View Article : Google Scholar : PubMed/NCBI | |
Tirado CA, Shabsovich D, Yeh L, Pullarkat ST, Yang L, Kallen M and Rao N: A (1;19) translocation involving TCF3-PBX1 fusion within the context of a hyperdiploid karyotype in adult B-ALL: A case report and review of the literature. Biomark Res. 3:42015. View Article : Google Scholar : PubMed/NCBI | |
Heim S and Mitelman F: Cancer Cytogenetics. 3. Wiley; Online Library, Hoboken, NJ: 2009 | |
Hajingabo LJ, Daakour S, Martin M, Grausenburger R, Panzer-Grümayer R, Dequiedt F, Simonis N and Twizere JC: Predicting interactome network perturbations in human cancer: Application to gene fusions in acute lymphoblastic leukemia. Mol Biol Cell. 25:3973–3985. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schotte D, Chau JCK, Sylvester G, Liu G, Chen C, van der Velden VH, Broekhuis MJ, Peters TC, Pieters R and den Boer ML: Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia. 23:313–322. 2009. View Article : Google Scholar | |
Lechman ER, Gentner B, van Galen P, Giustacchini A, Saini M, Boccalatte FE, Hiramatsu H, Restuccia U, Bachi A, Voisin V, et al: Attenuation of miR-126 activity expands HSC in vivo without exhaustion. Cell Stem Cell. 11:799–811. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ju X, Li D, Shi Q, Hou H, Sun N and Shen B: Differential microRNA expression in childhood B-cell precursor acute lymphoblastic leukemia. Pediatr Hematol Oncol. 26:1–10. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fulci V, Colombo T, Chiaretti S, Messina M, Citarella F, Tavolaro S, Guarini A, Foà R and Macino G: Characterization of B- and T-lineage acute lymphoblastic leukemia by integrated analysis of MicroRNA and mRNA expression profiles. Genes Chromosomes Cancer. 48:1069–1082. 2009. View Article : Google Scholar : PubMed/NCBI | |
Saki N, Abroun S, Soleimani M, Hajizamani S, Shahjahani M, Kast RE and Mortazavi Y: Involvement of microRNA in T-cell differentiation and malignancy. Int J Hematol Oncol Stem Cell Res. 9:33–49. 2015.PubMed/NCBI | |
Han B-W, Feng D-D, Li Z-G, Luo XQ, Zhang H, Li XJ, Zhang XJ, Zheng LL, Zeng CW, Lin KY, et al: A set of miRNAs that involve in the pathways of drug resistance and leukemic stem-cell differentiation is associated with the risk of relapse and glucocorticoid response in childhood ALL. Hum Mol Genet. 20:4903–4915. 2011. View Article : Google Scholar : PubMed/NCBI |