1
|
Kwak EL, Bang YJ, Camidge DR, Shaw AT,
Solomon B, Maki RG, Ou SH, Dezube BJ, Jänne PA, Costa DB, et al:
Anaplastic lymphoma kinase inhibition in non-small-cell lung
cancer. N Engl J Med. 363:1693–1703. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Soda M, Choi YL, Enomoto M, Takada S,
Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K,
Hatanaka H, et al: Identification of the transforming EML4-ALK
fusion gene in non-small-cell lung cancer. Nature. 448:561–566.
2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lindeman NI, Cagle PT, Beasley MB, Chitale
DA, Dacic S, Giaccone G, Jenkins RB, Kwiatkowski DJ, Saldivar JS,
Squire J, et al: Molecular testing guideline for selection of lung
cancer patients for EGFR and ALK tyrosine kinase inhibitors:
Guideline from the College of American Pathologists, International
Association for the Study of Lung Cancer, and Association for
Molecular Pathology. Arch Pathol Lab Med. 137:828–860. 2013.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Thunnissen E, Bubendorf L, Dietel M,
Elmberger G, Kerr K, Lopez-Rios F, Moch H, Olszewski W, Pauwels P,
Penault-Llorca F, et al: EML4-ALK testing in non-small cell
carcinomas of the lung: A review with recommendations. Virchows
Arch. 461:245–257. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Alì G, Proietti A, Pelliccioni S, Niccoli
C, Lupi C, Sensi E, Giannini R, Borrelli N, Menghi M, Chella A, et
al: ALK rearrangement in a large series of consecutive non-small
cell lung cancers: Comparison between a new immunohistochemical
approach and fluorescence in situ hybridization for the screening
of patients eligible for crizotinib treatment. Arch Pathol Lab Med.
138:1449–1458. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Cabillic F, Gros A, Dugay F, Begueret H,
Mesturoux L, Chiforeanu DC, Dufrenot L, Jauffret V, Dachary D,
Corre R, et al: Parallel FISH and immunohistochemical studies of
ALK status in 3244 non-small-cell lung cancers reveal major
discordances. J Thorac Oncol. 9:295–306. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Conklin CM, Craddock KJ, Have C, Laskin J,
Couture C and Ionescu DN: Immunohistochemistry is a reliable
screening tool for identification of ALK rearrangement in
non-small-cell lung carcinoma and is antibody dependent. J Thorac
Oncol. 8:45–51. 2013. View Article : Google Scholar
|
8
|
Hofman P, Ilie M, Hofman V, Roux S, Valent
A, Bernheim A, Alifano M, Leroy-Ladurie F, Vaylet F, Rouquette I,
et al: Immunohistochemistry to identify EGFR mutations or ALK
rearrangements in patients with lung adenocarcinoma. Ann Oncol.
23:1738–1743. 2012. View Article : Google Scholar
|
9
|
Hutarew G, Hauser-Kronberger C, Strasser
F, Llenos IC and Dietze O: Immunohistochemistry as a screening tool
for ALK rearrangement in NSCLC: Evaluation of five different ALK
antibody clones and ALK FISH. Histopathology. 65:398–407. 2014.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Ilie MI, Bence C, Hofman V, Long-Mira E,
Butori C, Bouhlel L, Lalvée S, Mouroux J, Poudenx M, Otto J, et al:
Discrepancies between FISH and immunohistochemistry for assessment
of the ALK status are associated with ALK 'borderline'-positive
rearrangements or a high copy number: A potential major issue for
anti-ALK therapeutic strategies. Ann Oncol. 26:238–244. 2015.
View Article : Google Scholar
|
11
|
Lantuejoul S, Rouquette I, Blons H, Le
Stang N, Ilie M, Begueret H, Grégoire V, Hofman P, Gros A, Garcia
S, et al: French multicentric validation of ALK rearrangement
diagnostic in 547 lung adenocarcinomas. Eur Respir J. 46:207–218.
2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
McLeer-Florin A, Moro-Sibilot D, Melis A,
Salameire D, Lefebvre C, Ceccaldi F, de Fraipont F, Brambilla E and
Lantuejoul S: Dual IHC and FISH testing for ALK gene rearrangement
in lung adenocarcinomas in a routine practice: A French study. J
Thorac Oncol. 7:348–354. 2012. View Article : Google Scholar
|
13
|
Paik JH, Choe G, Kim H, Choe JY, Lee HJ,
Lee CT, Lee JS, Jheon S and Chung JH: Screening of anaplastic
lymphoma kinase rearrangement by immunohistochemistry in non-small
cell lung cancer: Correlation with fluorescence in situ
hybridization. J Thorac Oncol. 6:466–472. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Savic S, Diebold J, Zimmermann AK, Jochum
W, Baschiera B, Grieshaber S, Tornillo L, Bisig B, Kerr K and
Bubendorf L: Screening for ALK in non-small cell lung carcinomas:
5A4 and D5F3 antibodies perform equally well, but combined use with
FISH is recommended. Lung Cancer. 89:104–109. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Selinger C, Cooper W, Lum T, McNeil C,
Morey A, Waring P, Amanuel B, Millward M, Peverall J, Van Vliet C,
et al: Equivocal ALK fluorescence in-situ hybridization (FISH)
cases may benefit from ancillary ALK FISH probe testing.
Histopathology. 67:654–663. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Selinger CI, Rogers TM, Russell PA,
O'Toole S, Yip P, Wright GM, Wainer Z, Horvath LG, Boyer M,
McCaughan B, et al: Testing for ALK rearrangement in lung
adenocarcinoma: A multicenter comparison of immunohistochemistry
and fluorescent in situ hybridization. Mod Pathol. 26:1545–1553.
2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sholl LM, Aisner DL, Varella-Garcia M,
Berry LD, Dias-Santagata D, Wistuba II, Chen H, Fujimoto J, Kugler
K, Franklin WA, et al LCMC Investigators: Multi-institutional
oncogenic driver mutation analysis in lung adenocarcinoma: the lung
cancer mutation consortium experience. J Thorac Oncol. 10:768–777.
2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sullivan HC, Fisher KE, Hoffa AL, Wang J,
Saxe D, Siddiqui MT and Cohen C: The role of immunohistochemical
analysis in the evaluation of EML4-ALK gene rearrangement in lung
cancer. Appl Immunohistochem Mol Morphol. 23:239–244. 2015.
View Article : Google Scholar
|
19
|
Teixidó C, Karachaliou N, Peg V,
Gimenez-Capitan A and Rosell R: Concordance of IHC, FISH and RT-PCR
for EML4-ALK rearrangements. Transl Lung Cancer Res. 3:70–74.
2014.
|
20
|
Wynes MW, Sholl LM, Dietel M, Schuuring E,
Tsao MS, Yatabe Y, Tubbs RR and Hirsch FR: An international
interpretation study using the ALK IHC antibody D5F3 and a
sensitive detection kit demonstrates high concordance between ALK
IHC and ALK FISH and between evaluators. J Thorac Oncol. 9:631–638.
2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zwaenepoel K, Van Dongen A, Lambin S, Weyn
C and Pauwels P: Detection of ALK expression in non-small-cell lung
cancer with ALK gene rearrangements - comparison of multiple
immunohistochemical methods. Histopathology. 65:539–548. 2014.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Gruber K, Horn H, Kalla J, Fritz P,
Rosenwald A, Kohlhäufl M, Friedel G, Schwab M, Ott G and Kalla C:
Detection of rearrangements and transcriptional up-regulation of
ALK in FFPE lung cancer specimens using a novel, sensitive,
quantitative reverse transcription polymerase chain reaction assay.
J Thorac Oncol. 9:307–315. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gruber K, Kohlhäufl M, Friedel G, Ott G
and Kalla C: A novel, highly sensitive ALK antibody 1A4 facilitates
effective screening for ALK rearrangements in lung adenocarcinomas
by standard immunohistochemistry. J Thorac Oncol. 10:713–716. 2015.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kim H, Yoo SB, Choe JY, Paik JH, Xu X,
Nitta H, Zhang W, Grogan TM, Lee CT, Jheon S, et al: Detection of
ALK gene rearrangement in non-small cell lung cancer: A comparison
of fluorescence in situ hybridization and chromogenic in situ
hybridization with correlation of ALK protein expression. J Thorac
Oncol. 6:1359–1366. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Nitta H, Tsuta K, Yoshida A, Ho SN, Kelly
BD, Murata LB, Kosmeder J, White K, Ehser S, Towne P, et al: New
methods for ALK status diagnosis in non-small-cell lung cancer: An
improved ALK immunohistochemical assay and a new, Brightfield, dual
ALK IHC-in situ hybridization assay. J Thorac Oncol. 8:1019–1031.
2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Pekar-Zlotin M, Hirsch FR, Soussan-Gutman
L, Ilouze M, Dvir A, Boyle T, Wynes M, Miller VA, Lipson D, Palmer
GA, et al: Fluorescence in situ hybridization,
immunohistochemistry, and next-generation sequencing for detection
of EML4-ALK rearrangement in lung cancer. Oncologist. 20:316–322.
2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gainor JF, Varghese AM, Ou SH, Kabraji S,
Awad MM, Katayama R, Pawlak A, Mino-Kenudson M, Yeap BY, Riely GJ,
et al: ALK rearrangements are mutually exclusive with mutations in
EGFR or KRAS: An analysis of 1,683 patients with non-small cell
lung cancer. Clin Cancer Res. 19:4273–4281. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Jokoji R, Yamasaki T, Minami S, Komuta K,
Sakamaki Y, Takeuchi K and Tsujimoto M: Combination of
morphological feature analysis and immunohistochemistry is useful
for screening of EML4-ALK-positive lung adenocarcinoma. J Clin
Pathol. 63:1066–1070. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Just PA, Cazes A, Audebourg A, Cessot A,
Pallier K, Danel C, Vacher-Lavenu MC, Laurent-Puig P, Terris B and
Blons H: Histologic subtypes, immunohistochemistry, FISH or
molecular screening for the accurate diagnosis of ALK-rearrangement
in lung cancer: A comprehensive study of Caucasian non-smokers.
Lung Cancer. 76:309–315. 2012. View Article : Google Scholar
|
30
|
Paik JH, Choi CM, Kim H, Jang SJ, Choe G,
Kim DK, Kim HJ, Yoon H, Lee CT, Jheon S, et al: Clinicopathologic
implication of ALK rearrangement in surgically resected lung
cancer: A proposal of diagnostic algorithm for ALK-rearranged
adenocarcinoma. Lung Cancer. 76:403–409. 2012. View Article : Google Scholar
|
31
|
Shaw AT, Yeap BY, Mino-Kenudson M,
Digumarthy SR, Costa DB, Heist RS, Solomon B, Stubbs H, Admane S,
McDermott U, et al: Clinical features and outcome of patients with
non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol.
27:4247–4253. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa
K, Mekhail T, Felip E, Cappuzzo F, Paolini J, Usari T, et al
PROFILE 1014 Investigators: First-line crizotinib versus
chemotherapy in ALK-positive lung cancer. N Engl J Med.
371:2167–2177. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Salido M, Pijuan L, Martínez-Avilés L,
Galván AB, Cañadas I, Rovira A, Zanui M, Martínez A, Longarón R,
Sole F, et al: Increased ALK gene copy number and amplification are
frequent in non-small cell lung cancer. J Thorac Oncol. 6:21–27.
2011. View Article : Google Scholar
|
34
|
Won JK, Keam B, Koh J, Cho HJ, Jeon YK,
Kim TM, Lee SH, Lee DS, Kim DW and Chung DH: Concomitant ALK
translocation and EGFR mutation in lung cancer: A comparison of
direct sequencing and sensitive assays and the impact on
responsiveness to tyrosine kinase inhibitor. Ann Oncol. 26:348–354.
2015. View Article : Google Scholar
|
35
|
Camidge DR, Kono SA, Flacco A, Tan AC,
Doebele RC, Zhou Q, Crino L, Franklin WA and Varella-Garcia M:
Optimizing the detection of lung cancer patients harboring
anaplastic lymphoma kinase (ALK) gene rearrangements potentially
suitable for ALK inhibitor treatment. Clin Cancer Res.
16:5581–5590. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Abe H, Kawahara A, Azuma K, Taira T,
Takase Y, Fukumitsu C, Murata K, Yamaguchi T, Akiba J, Ishii H, et
al: Heterogeneity of anaplastic lymphoma kinase gene rearrangement
in non-small-cell lung carcinomas: A comparative study between
small biopsy and excision samples. J Thorac Oncol. 10:800–805.
2015. View Article : Google Scholar : PubMed/NCBI
|