Current treatments for advanced melanoma and introduction of a promising novel gene therapy for melanoma (Review)
- Authors:
- Jae‑Rim Heo
- Nam‑Hyung Kim
- Jaejin Cho
- Kyung‑Chul Choi
-
Affiliations: Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea, Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea, Department of Dental Regenerative Biotechnology, Seoul National University, Seoul, Republic of Korea - Published online on: August 24, 2016 https://doi.org/10.3892/or.2016.5032
- Pages: 1779-1786
This article is mentioned in:
Abstract
Mirzaei H, Sahebkar A, Avan A, Jaafari MR, Salehi R, Salehi H, Baharvand H, Rezaei A, Hadjati J, Pawelek JM, et al: Application of mesenchymal stem cells in melanoma: A potential therapeutic strategy for delivery of targeted agents. Curr Med Chem. 23:455–463. 2016. View Article : Google Scholar | |
Maverakis E, Cornelius LA, Bowen GM, Phan T, Patel FB, Fitzmaurice S, He Y, Burrall B, Duong C, Kloxin AM, et al: Metastatic melanoma - a review of current and future treatment options. Acta Derm Venereol. 95:516–524. 2015. View Article : Google Scholar | |
Younes R, Abrao FC and Gross J: Pulmonary metastasectomy for malignant melanoma: Prognostic factors for long-term survival. Melanoma Res. 23:307–311. 2013.PubMed/NCBI | |
Wong JH, Skinner KA, Kim KA, Foshag LJ and Morton DL: The role of surgery in the treatment of nonregionally recurrent melanoma. Surgery. 113:389–394. 1993.PubMed/NCBI | |
Sosman JA, Moon J, Tuthill RJ, Warneke JA, Vetto JT, Redman BG, Liu PY, Unger JM, Flaherty LE and Sondak VK: A phase 2 trial of complete resection for stage IV melanoma: Results of Southwest Oncology Group Clinical Trial S9430. Cancer. 117:4740–4706. 2011. View Article : Google Scholar : PubMed/NCBI | |
National Cancer Institute of Canada Melanoma Group: Vinblastine, bleomycin, and cis-platinum for the treatment of metastatic malignant melanoma. J Clin Oncol. 2:131–134. 1984. | |
Kim T, Amaria RN, Spencer C, Reuben A, Cooper ZA and Wargo JA: Combining targeted therapy and immune checkpoint inhibitors in the treatment of metastatic melanoma. Cancer Biol Med. 11:237–246. 2014. | |
Eggermont AM and Kirkwood JM: Re-evaluating the role of dacarbazine in metastatic melanoma: What have we learned in 30 years? Eur J Cancer. 40:1825–1836. 2004. View Article : Google Scholar : PubMed/NCBI | |
Huncharek M, Caubet JF and McGarry R: Single-agent DTIC versus combination chemotherapy with or without immunotherapy in metastatic melanoma: A meta-analysis of 3273 patients from 20 randomized trials. Melanoma Res. 11:75–81. 2001. View Article : Google Scholar : PubMed/NCBI | |
Middleton MR, Grob JJ, Aaronson N, Fierlbeck G, Tilgen W, Seiter S, Gore M, Aamdal S, Cebon J, Coates A, et al: Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol. 18:158–166. 2000.PubMed/NCBI | |
Chapman PB, Einhorn LH, Meyers ML, Saxman S, Destro AN, Panageas KS, Begg CB, Agarwala SS, Schuchter LM, Ernstoff MS, et al: Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J Clin Oncol. 17:2745–2751. 1999.PubMed/NCBI | |
Legha SS, Ring S, Papadopoulos N, Plager C, Chawla S and Benjamin R: A prospective evaluation of a triple-drug regimen containing cisplatin, vinblastine, and dacarbazine (CVD) for metastatic melanoma. Cancer. 64:2024–2029. 1989. View Article : Google Scholar : PubMed/NCBI | |
A Schindler K and Postow MA: Current options and future directions in the systemic treatment of metastatic melanoma. J Community Support Oncol. 12:20–26. 2014. View Article : Google Scholar : PubMed/NCBI | |
Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, et al: Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 364:2517–2526. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hersh EM, O'Day SJ, Powderly J, Khan KD, Pavlick AC, Cranmer LD, Samlowski WE, Nichol GM, Yellin MJ and Weber JS: A phase II multicenter study of ipilimumab with or without dacarbazine in chemotherapy-naïve patients with advanced melanoma. Invest New Drugs. 29:489–498. 2011. View Article : Google Scholar | |
Kaplan MG: Ipilimumab plus dacarbazine in melanoma. N Engl J Med. 365:1256–1257; author reply 1257–1258. 2011. View Article : Google Scholar : PubMed/NCBI | |
Luke JJ, Callahan MK, Postow MA, Romano E, Ramaiya N, Bluth M, Giobbie-Hurder A, Lawrence DP, Ibrahim N, Ott PA, et al: Clinical activity of ipilimumab for metastatic uveal melanoma: A retrospective review of the Dana-Farber Cancer Institute, Massachusetts General Hospital, Memorial Sloan-Kettering Cancer Center, and University Hospital of Lausanne experience. Cancer. 119:3687–3695. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, Patt D, Chen TT, Berman DM and Wolchok JD: Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 33:1889–1894. 2015. View Article : Google Scholar : PubMed/NCBI | |
Weber JS, Kähler KC and Hauschild A: Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 30:2691–2697. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zou W and Chen L: Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 8:467–477. 2008. View Article : Google Scholar : PubMed/NCBI | |
Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, Koulmanda M, Freeman GJ, Sayegh MH and Sharpe AH: Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med. 203:883–895. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al: PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 515:568–571. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, et al: Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 369:134–144. 2013. View Article : Google Scholar : PubMed/NCBI | |
Weber JS, D'Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH Jr, Lao CD, et al: Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 16:375–384. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, et al: Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 369:122–133. 2013. View Article : Google Scholar : PubMed/NCBI | |
Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, Linette GP, Meyer N, Giguere JK, Agarwala SS, et al: Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 372:2006–2017. 2015. View Article : Google Scholar : PubMed/NCBI | |
Larkin J, Hodi FS and Wolchok JD: Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 373:1270–1271. 2015. View Article : Google Scholar : PubMed/NCBI | |
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 366:2443–2454. 2012. View Article : Google Scholar : PubMed/NCBI | |
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, et al: Mutations of the BRAF gene in human cancer. Nature. 417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI | |
Davies MA, Stemke-Hale K, Lin E, Tellez C, Deng W, Gopal YN, Woodman SE, Calderone TC, Ju Z, Lazar AJ, et al: Integrated molecular and clinical analysis of AKT activation in metastatic melanoma. Clin Cancer Res. 15:7538–7546. 2009. View Article : Google Scholar : PubMed/NCBI | |
Davey RJ, van der Westhuizen A and Bowden NA: Metastatic melanoma treatment: Combining old and new therapies. Crit Rev Oncol Hematol. 98:242–253. 2016. View Article : Google Scholar | |
Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O'Dwyer PJ, Lee RJ, Grippo JF, Nolop K, et al: Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 363:809–819. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ribas A and Flaherty KT: BRAF targeted therapy changes the treatment paradigm in melanoma. Nat Rev Clin Oncol. 8:426–433. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, Rutkowski P, Blank CU, Miller WH Jr, Kaempgen E, et al: Dabrafenib in BRAF-mutated metastatic melanoma: A multicentre, open-label, phase 3 randomised controlled trial. Lancet. 380:358–365. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, Spevak W, Zhang C, Zhang Y, Habets G, et al: Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 467:596–599. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ, Flaherty KT, et al: Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 366:707–714. 2012. View Article : Google Scholar : PubMed/NCBI | |
Long GV, Trefzer U, Davies MA, Kefford RF, Ascierto PA, Chapman PB, Puzanov I, Hauschild A, Robert C, Algazi A, et al: Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): A multicentre, open-label, phase 2 trial. Lancet Oncol. 13:1087–1095. 2012. View Article : Google Scholar : PubMed/NCBI | |
Heakal Y, Kester M and Savage S: Vemurafenib (PLX4032): An orally available inhibitor of mutated BRAF for the treatment of metastatic melanoma. Ann Pharmacother. 45:1399–1405. 2011. View Article : Google Scholar : PubMed/NCBI | |
Luke JJ and Hodi FS: Vemurafenib and BRAF inhibition: A new class of treatment for metastatic melanoma. Clin Cancer Res. 18:9–14. 2012. View Article : Google Scholar | |
Lo RS and Shi H: Detecting mechanisms of acquired BRAF inhibitor resistance in melanoma. Methods Mol Biol. 1102:163–174. 2014. View Article : Google Scholar | |
Sullivan RJ and Flaherty KT: Resistance to BRAF-targeted therapy in melanoma. Eur J Cancer. 49:1297–1304. 2013. View Article : Google Scholar : PubMed/NCBI | |
Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, Shi H, Atefi M, Titz B, Gabay MT, et al: RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature. 480:387–390. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Hugo W, Kong X, Hong A, Koya RC, Moriceau G, Chodon T, Guo R, Johnson DB, Dahlman KB, et al: Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 4:80–93. 2014. View Article : Google Scholar : | |
Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, Wubbenhorst B, Xu X, Gimotty PA, Kee D, et al: Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 18:683–695. 2010. View Article : Google Scholar : PubMed/NCBI | |
Koefinger P, Wels C, Joshi S, Damm S, Steinbauer E, Beham-Schmid C, Frank S, Bergler H and Schaider H: The cadherin switch in melanoma instigated by HGF is mediated through epithelial-mesenchymal transition regulators. Pigment Cell Melanoma Res. 24:382–385. 2011. View Article : Google Scholar : | |
Topcu-Yilmaz P, Kiratli H, Saglam A, Söylemezoglu F and Hascelik G: Correlation of clinicopathological parameters with HGF, c-Met, EGFR, and IGF-1R expression in uveal melanoma. Melanoma Res. 20:126–132. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gajewski TF: Identifying and overcoming immune resistance mechanisms in the melanoma tumor microenvironment. Clin Cancer Res. 12:2326s–2330s. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P, Kehoe SM, Johannessen CM, Macconaill LE, Hahn WC, et al: Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol. 29:3085–3096. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim KB, Kefford R, Pavlick AC, Infante JR, Ribas A, Sosman JA, Fecher LA, Millward M, McArthur GA, Hwu P, et al: Phase II study of the MEK1/MEK2 inhibitor Trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. J Clin Oncol. 31:482–489. 2013. View Article : Google Scholar | |
Menzies AM and Long GV: Dabrafenib and trametinib, alone and in combination for BRAF-mutant metastatic melanoma. Clin Cancer Res. 20:2035–2043. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim MO, Kim SH, Oi N, Lee MH, Yu DH, Kim DJ, Cho EJ, Bode AM, Cho YY, Bowden TG, et al: Embryonic stem-cell-preconditioned microenvironment induces loss of cancer cell properties in human melanoma cells. Pigment Cell Melanoma Res. 24:922–931. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kirkwood JM, Bastholt L, Robert C, Sosman J, Larkin J, Hersey P, Middleton M, Cantarini M, Zazulina V, Kemsley K, et al: Phase II, open-label, randomized trial of the MEK1/2 inhibitor selumetinib as monotherapy versus temozolomide in patients with advanced melanoma. Clin Cancer Res. 18:555–567. 2012. View Article : Google Scholar | |
Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, Hamid O, Schuchter L, Cebon J, Ibrahim N, et al: Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 367:1694–1703. 2012. View Article : Google Scholar : PubMed/NCBI | |
Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, Garbe C, Jouary T, Hauschild A, Grob JJ, et al: Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: A multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 386:444–451. 2015. View Article : Google Scholar : PubMed/NCBI | |
Müller FJ, Snyder EY and Loring JF: Gene therapy: Can neural stem cells deliver? Nat Rev Neurosci. 7:75–84. 2006. View Article : Google Scholar | |
Bago JR, Sheets KT and Hingtgen SD: Neural stem cell therapy for cancer. Methods. 99:37–43. 2016. View Article : Google Scholar | |
Gage FH: Mammalian neural stem cells. Science. 287:1433–1438. 2000. View Article : Google Scholar : PubMed/NCBI | |
Benedetti S, Pirola B, Pollo B, Magrassi L, Bruzzone MG, Rigamonti D, Galli R, Selleri S, Di Meco F, De Fraja C, et al: Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med. 6:447–450. 2000. View Article : Google Scholar : PubMed/NCBI | |
Herrlinger U, Woiciechowski C, Sena-Esteves M, Aboody KS, Jacobs AH, Rainov NG, Snyder EY and Breakefield XO: Neural precursor cells for delivery of replication-conditional HSV-1 vectors to intracerebral gliomas. Mol Ther. 1:347–357. 2000. View Article : Google Scholar : PubMed/NCBI | |
Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, et al: Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas. Proc Natl Acad Sci USA. 97:12846–12851. 2000. View Article : Google Scholar : PubMed/NCBI | |
Consiglio A, Gritti A, Dolcetta D, Follenzi A, Bordignon C, Gage FH, Vescovi AL and Naldini L: Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proc Natl Acad Sci USA. 101:14835–14840. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhao D, Najbauer J, Garcia E, Metz MZ, Gutova M, Glackin CA, Kim SU and Aboody KS: Neural stem cell tropism to glioma: Critical role of tumor hypoxia. Mol Cancer Res. 6:1819–1829. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Luo X, Wan F and Lei T: The roles of hypoxia-inducible factors in regulating neural stem cells migration to glioma stem cells and determinating their fates. Neurochem Res. 37:2659–2666. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Lee J and Fine HA: Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. J Clin Invest. 113:1364–1374. 2004. View Article : Google Scholar : PubMed/NCBI | |
Magge SN, Malik SZ, Royo NC, Chen HI, Yu L, Snyder EY, O'Rourke DM and Watson DJ: Role of monocyte chemoattractant protein-1 (MCP-1/CCL2) in migration of neural progenitor cells toward glial tumors. J Neurosci Res. 87:1547–1555. 2009. View Article : Google Scholar : PubMed/NCBI | |
An JH, Lee SY, Jeon JY, Cho KG, Kim SU and Lee MA: Identification of gliotropic factors that induce human stem cell migration to malignant tumor. J Proteome Res. 8:2873–2881. 2009. View Article : Google Scholar : PubMed/NCBI | |
Heese O, Disko A, Zirkel D, Westphal M and Lamszus K: Neural stem cell migration toward gliomas in vitro. Neuro Oncol. 7:476–484. 2005. View Article : Google Scholar : PubMed/NCBI | |
Schmidt NO, Przylecki W, Yang W, Ziu M, Teng Y, Kim SU, Black PM, Aboody KS and Carroll RS: Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia. 7:623–629. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kim SK, Kim SU, Park IH, Bang JH, Aboody KS, Wang KC, Cho BK, Kim M, Menon LG, Black PM, et al: Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res. 12:5550–5556. 2006. View Article : Google Scholar : PubMed/NCBI | |
Joo KM, Park IH, Shin JY, Jin J, Kang BG, Kim MH, Lee SJ, Jo MY, Kim SU and Nam DH: Human neural stem cells can target and deliver therapeutic genes to breast cancer brain metastases. Mol Ther. 17:570–575. 2009. View Article : Google Scholar : PubMed/NCBI | |
Aboody KS, Bush RA, Garcia E, Metz MZ, Najbauer J, Justus KA, Phelps DA, Remack JS, Yoon KJ, Gillespie S, et al: Development of a tumor-selective approach to treat metastatic cancer. PLoS One. 1:e232006. View Article : Google Scholar : PubMed/NCBI | |
Schepelmann S, Ogilvie LM, Hedley D, Friedlos F, Martin J, Scanlon I, Chen P, Marais R and Springer CJ: Suicide gene therapy of human colon carcinoma xenografts using an armed oncolytic adenovirus expressing carboxypeptidase G2. Cancer Res. 67:4949–4955. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schepelmann S and Springer CJ: Viral vectors for gene-directed enzyme prodrug therapy. Curr Gene Ther. 6:647–670. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kim SU, Jeung EB, Kim YB, Cho MH and Choi KC: Potential tumor-tropic effect of genetically engineered stem cells expressing suicide enzymes to selectively target invasive cancer in animal models. Anticancer Res. 31:1249–1258. 2011.PubMed/NCBI | |
Hiraoka K, Kimura T, Logg CR, Tai CK, Haga K, Lawson GW and Kasahara N: Therapeutic efficacy of replication-competent retrovirus vector-mediated suicide gene therapy in a multifocal colorectal cancer metastasis model. Cancer Res. 67:5345–5353. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pastorakova A, Hlubinova K, Jakubikova J and Altaner C: Combine cancer gene therapy harnessing plasmids expressing human tumor necrosis factor alpha and Herpes simplex thymidine kinase suicide gene. Neoplasma. 53:353–362. 2006.PubMed/NCBI | |
Brown AB, Yang W, Schmidt NO, Carroll R, Leishear KK, Rainov NG, Black PM, Breakefield XO and Aboody KS: Intravascular delivery of neural stem cell lines to target intracranial and extracranial tumors of neural and non-neural origin. Hum Gene Ther. 14:1777–1785. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yip S, Aboody KS, Burns M, Imitola J, Boockvar JA, Allport J, Park KI, Teng YD, Lachyankar M, McIntosh T, et al: Neural stem cell biology may be well suited for improving brain tumor therapies. Cancer J. 9:189–204. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ehtesham M, Yuan X, Kabos P, Chung NH, Liu G, Akasaki Y, Black KL and Yu JS: Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia. 6:287–293. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, Passaniti A, Menon J, Walling J, Bailey R, et al: Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell. 9:287–300. 2006. View Article : Google Scholar : PubMed/NCBI | |
Beppu K, Jaboine J, Merchant MS, Mackall CL and Thiele CJ: Effect of imatinib mesylate on neuroblastoma tumorigenesis and vascular endothelial growth factor expression. J Natl Cancer Inst. 96:46–55. 2004. View Article : Google Scholar : PubMed/NCBI | |
Geminder H, Sagi-Assif O, Goldberg L, Meshel T, Rechavi G, Witz IP and Ben-Baruch A: A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol. 167:4747–4757. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A, Ratajczak J and Ratajczak MZ: Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4 axis. Stem Cells. 23:879–894. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vicari AP and Caux C: Chemokines in cancer. Cytokine Growth Factor Rev. 13:143–154. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lazennec G and Richmond A: Chemokines and chemokine receptors: New insights into cancer-related inflammation. Trends Mol Med. 16:133–144. 2010. View Article : Google Scholar : PubMed/NCBI | |
Loebinger MR and Janes SM: Stem cells as vectors for antitumour therapy. Thorax. 65:362–369. 2010. View Article : Google Scholar : PubMed/NCBI | |
Spaeth E, Klopp A, Dembinski J, Andreeff M and Marini F: Inflammation and tumor microenvironments: Defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 15:730–738. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Ma D, Li Y, Yang Y, Hu X, Zhang W and Fang Q: Targeted delivery of CYP2E1 recombinant adenovirus to malignant melanoma by bone marrow-derived mesenchymal stem cells as vehicles. Anticancer Drugs. 25:303–314. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jing HX, Duan J, Zhou H, Hu QM and Lei TC: Adipose derived mesenchymal stem cell facilitated TRAIL expression in melanoma treatment in vitro. Mol Med Rep. 14:195–201. 2016.PubMed/NCBI | |
Seo KW, Lee HW, Oh YI, Ahn JO, Koh YR, Oh SH, Kang SK and Youn HY: Anti-tumor effects of canine adipose tissue-derived mesenchymal stromal cell-based interferon-β gene therapy and cisplatin in a mouse melanoma model. Cytotherapy. 13:944–955. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tyciakova S, Matuskova M, Bohovic R, Polakova K, Toro L, Skolekova S and Kucerova L: Genetically engineered mesenchymal stromal cells producing TNFα have tumour suppressing effect on human melanoma xenograft. J Gene Med. 17:54–67. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yi BR, Hwang KA, Aboody KS, Jeung EB, Kim SU and Choi KC: Selective antitumor effect of neural stem cells expressing cytosine deaminase and interferon-beta against ductal breast cancer cells in cellular and xenograft models. Stem Cell Res (Amst). 12:36–48. 2014. View Article : Google Scholar | |
Yi BR, Kim SU and Choi KC: Additional effects of engineered stem cells expressing a therapeutic gene and interferon-β in a xenograft mouse model of endometrial cancer. Int J Oncol. 47:171–178. 2015.PubMed/NCBI | |
Yi BR, Park MA, Lee HR, Kang NH, Choi KJ, Kim SU and Choi KC: Suppression of the growth of human colorectal cancer cells by therapeutic stem cells expressing cytosine deaminase and interferon-β via their tumor-tropic effect in cellular and xenograft mouse models. Mol Oncol. 7:543–554. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim DJ, Yi BR, Lee HR, Kim SU and Choi KC: Pancreatic tumor mass in a xenograft mouse model is decreased by treatment with therapeutic stem cells following introduction of therapeutic genes. Oncol Rep. 30:1129–1136. 2013.PubMed/NCBI | |
Yi BR, Kim SU and Choi KC: Co-treatment with therapeutic neural stem cells expressing carboxyl esterase and CPT-11 inhibit growth of primary and metastatic lung cancers in mice. Oncotarget. 5:12835–12848. 2014. View Article : Google Scholar : PubMed/NCBI |