1
|
Moulton JE: Tumors of alimentary tract.
Tumors in Domestic Animals. Moulton JE III: University of
California Press; Berkeley: pp. 240–272. 1977
|
2
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Worldwide variations in colorectal cancer. CA
Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Center MM, Jemal A, Smith RA and Ward E:
Worldwide variations in colorectal cancer. CA Cancer J Clin.
59:366–378. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Fung TT and Brown LS: Dietary patterns and
the risk of colorectal cancer. Curr Nutr Rep. 2:48–55. 2013.
View Article : Google Scholar :
|
5
|
Armstrong B and Doll R: Environmental
factors and cancer incidence and mortality in different countries,
with special reference to dietary practices. Int J Cancer.
15:617–631. 1975. View Article : Google Scholar : PubMed/NCBI
|
6
|
Key TJ: Fruit and vegetables and cancer
risk. Br J Cancer. 104:6–11. 2011. View Article : Google Scholar :
|
7
|
World Cancer Research Fund and American
Institute for Cancer Research: WCRF/AICR Systematic Literature
Review Continuous Update Project Report: The Associations between
Food. (Nutrition and Physical Activity and the Risk of Colorectal
Cancer). 2011, http://www.wcrf.org/int/research-we-fund/cancer-prevention-recommendations/pant-foodsurisimplewww.wcrf.org/int/research-we-fund/cancer-prevention-recommendations/pant-foods.
Access date: June 2015.
|
8
|
Etkin NL: Medicinal cuisines: Diet and
ethnopharmacology. Int J Pharmacogn. 34:313–326. 1996. View Article : Google Scholar
|
9
|
Lee JE: Vitamin D and colorectal cancer
prevention: A review of epidemiologic studies. Curr Nutr Rep.
2:27–36. 2013. View Article : Google Scholar
|
10
|
Hwang BY, Chai HB, Kardono LBS, Riswan S,
Farnsworth NR, Cordell GA, Pezzuto JM and Kinghorn AD: Cytotoxic
triterpenes from the twigs of Celtis philippinensis.
Phytochemistry. 62:197–201. 2003. View Article : Google Scholar
|
11
|
Pignatti S: Flora d'Italia. Edagricole;
Bologna: pp. 1221997
|
12
|
Chari VM, Neelakantan S and Seshadri TR:
Chemical components of Betula utilis and Celtis australis. Indian J
Chem. 6:231–234. 1968.
|
13
|
Borges FFV, Machado TC, Cunha KS, Pereira
KC, Costa EA, De Paula JR and Chen-Chen L: Assessment of the
cytotoxic, genotoxic, and antigenotoxic activities of Celtis
iguanaea (Jacq) in mice. An Acad Bras Cienc. 85:955–964. 2013.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Santa-Cruz LH, Turner CE, Knapp JE, Schiff
PL Jr and Slatkin DJ: Moretenol and other constituents of Celtis
laevigata. Phytochemistry. 14:2532–2533. 1975. View Article : Google Scholar
|
15
|
Adedapo AA, Jimoh FO, Afolayan AJ and
Masika PJ: Antioxidant properties of the methanol extracts of the
leaves and stems of Celtis africana. Rec Nat Prod. 3:23–31.
2009.
|
16
|
El-Alfy TS, El-Gohary HM, Sokkar NM, Hosny
M and Al-Mahdy DA: A new flavonoid C-Glycoside from Celtis
australis L. and Celtis occidentalis L. leaves and potential
antioxidant and cytotoxic activities. Sci Pharm. 79:963–975. 2011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Weisburger JH: Antimutagenesis and
anticarcinogenesis, from the past to the future. Mutat Res.
480–481:23–35. 2001. View Article : Google Scholar
|
18
|
Balkwill F and Mantovani A: Inflammation
and cancer: Back to Virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ohshima H, Tatemichi M and Sawa T:
Chemical basis of inflammation-induced carcinogenesis. Arch Biochem
Biophys. 417:3–11. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Acquaviva R, Campisi A, Murabito P, Raciti
G, Avola R, Mangiameli S, Musumeci I, Barcellona ML, Vanella A and
Li Volti G: Propofol attenuates peroxynitrite-mediated DNA damage
and apoptosis in cultured astrocytes: An alternative protective
mechanism. Anesthesiology. 101:1363–1371. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Acquaviva R, Di Giacomo C, Sorrenti V,
Galvano F, Santangelo R, Cardile V, Gangia S, D'Orazio N, Abraham
NG and Vanella L: Antiproliferative effect of oleuropein in
prostate cell lines. Int J Oncol. 41:31–38. 2012.PubMed/NCBI
|
22
|
Di Giacomo C, Acquaviva R, Sorrenti V,
Vanella A, Grasso S, Barcellona ML, Galvano F, Vanella L and Renis
M: Oxidative and antioxidant status in plasma of runners: effect of
oral supplementation with natural antioxidants. J Med Food.
12:145–150. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bradford MM: A rapid and sensitive method
for the quantitation of microgram quantities of protein utilizing
the principle of protein-dye binding. Anal Biochem. 72:248–254.
1976. View Article : Google Scholar : PubMed/NCBI
|
24
|
Russo A, Borrelli F, Campisi A, Acquaviva
R, Raciti G and Vanella A: nitric oxide-related toxicity in
cultured astrocytes: Effect of Bacopa monniera. Life Sci.
73:1517–1526. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li Volti G, Galvano F, Frigiola A,
Guccione S, Di Giacomo C, Forte S, Tringali G, Caruso M, Adekoya OA
and Gazzolo D: Potential immunoregulatory role of heme oxygenase-1
in human milk: A combined biochemical and molecular modeling
approach. J Nutr Biochem. 21:865–871. 2010. View Article : Google Scholar
|
26
|
Bastide P, Darido C, Pannequin J, Kist R,
Robine S, Marty-Double C, Bibeau F, Scherer G, Joubert D, Hollande
F, et al: Sox9 regulates cell proliferation and is required for
Paneth cell differentiation in the intestinal epithelium. J Cell
Biol. 178:635–648. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Panza A, Pazienza V, Ripoli M, Benegiamo
G, Gentile A, Valvano MR, Augello B, Merla G, Prattichizzo C,
Tavano F, et al: Interplay between SOX9, β-catenin and PPARγ
activation in colorectal cancer. Biochim Biophys Acta.
1833:1853–1865. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Fadeel B and Orrenius S: Apoptosis: A
basic biological phenomenon with wide-ranging implications in human
disease. J Intern Med. 258:479–517. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tang WM, Chan E, Kwok CY, Lee YK, Wu JH,
Wan CW, Chan RYK, Yu PHF and Chan SW: A review of the anticancer
and immunomodulatory effects of Lycium barbarum fruit.
Inflammopharmacology. 20:307–314. 2012. View Article : Google Scholar
|
30
|
Sarkar FH, Li Y, Wang Z and Kong D: Novel
targets for prostate cancer chemoprevention. Endocr Relat Cancer.
17:R195–R212. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Reyes FJ, Centelles JJ, Lupiáñez JA and
Cascante M: (2Alpha,3beta)-2,3-dihydroxyolean-12-en-28-oic acid, a
new natural triterpene from Olea europea, induces caspase dependent
apoptosis selectively in colon adenocarcinoma cells. FEBS Lett.
580:6302–6310. 2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu J: Pharmacology of oleanolic acid and
ursolic acid. J Ethnopharmacol. 49:57–68. 1995. View Article : Google Scholar : PubMed/NCBI
|
33
|
Murakami S, Takashima H, Sato-Watanabe M,
Chonan S, Yamamoto K, Saitoh M, Saito S, Yoshimura H, Sugawara K,
Yang J, et al: Ursolic acid, an antagonist for transforming growth
factor (TGF)-beta1. FEBS Lett. 566:55–59. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Valko M, Rhodes CJ, Moncol J, Izakovic M
and Mazur M: Free radicals, metals and antioxidants in oxidative
stress-induced cancer. Chem Biol Interact. 160:1–40. 2006.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Conner EM and Grisham MB: Inflammation,
free radicals, and antioxidants. Nutrition. 12:274–277. 1996.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang SY and Jiao H: Scavenging capacity of
berry crops on superoxide radicals, hydrogen peroxide, hydroxyl
radicals, and singlet oxygen. J Agric Food Chem. 48:5677–5684.
2000. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hirano T, Abe K, Gotoh M and Oka K: Citrus
flavone tangeretin inhibits leukaemic HL-60 cell growth partially
through induction of apoptosis with less cytotoxicity on normal
lymphocytes. Br J Cancer. 72:1380–1388. 1995. View Article : Google Scholar : PubMed/NCBI
|
38
|
World Cancer Research Fund and American
Institute for Cancer Research: Patterns of diet and cancer. Food,
Nutrition and the Prevention of Cancer: A Global Perspective.
American Institute for Cancer Research; Washington, DC: pp.
430–471. 1997
|
39
|
Wlodek L and Steven HZ: Antioxidants,
programmed cell death, and cancer. Nutr Res. 21:295–307. 2001.
View Article : Google Scholar
|
40
|
Choi AM and Alam J: Heme oxygenase-1:
Function, regulation, and implication of a novel stress-inducible
protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol.
15:9–19. 1996. View Article : Google Scholar : PubMed/NCBI
|
41
|
Camhi SL, Alam J, Wiegand GW, Chin BY and
Choi AM: Transcriptional activation of the HO-1 gene by
lipopolysaccharide is mediated by 5′ distal enhancers: Role of
reactive oxygen intermediates and AP-1. Am J Respir Cell Mol Biol.
18:226–234. 1998. View Article : Google Scholar : PubMed/NCBI
|
42
|
Sunamura M, Duda DG, Ghattas MH, Lozonschi
L, Motoi F, Yamauchi J, Matsuno S, Shibahara S and Abraham NG: Heme
oxygenase-1 accelerates tumor angiogenesis of human pancreatic
cancer. Angiogenesis. 6:15–24. 2003. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hill M, Pereira V, Chauveau C, Zagani R,
Remy S, Tesson L, Mazal D, Ubillos L, Brion R, Asghar K, et al:
Heme oxygenase-1 inhibits rat and human breast cancer cell
proliferation: Mutual cross inhibition with indoleamine
2,3-dioxygenase. FASEB J. 19:1957–1968. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Yanagawa T, Omura K, Harada H, Nakaso K,
Iwasa S, Koyama Y, Onizawa K, Yusa H and Yoshida H: Heme
oxygenase-1 expression predicts cervical lymph node metastasis of
tongue squamous cell carcinomas. Oral Oncol. 40:21–27. 2004.
View Article : Google Scholar
|