1
|
Shibuya K and Hiraoka M: Radiation therapy
for lung cancer. Gan To Kagaku Ryoho. 34:544–549. 2007.In Japanese.
PubMed/NCBI
|
2
|
Jemal A, Siegel R, Xu J and Ward E: Cancer
statistics, 2010. CA Cancer J Clin. 60:277–300. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kayser G, Csanadi A, Otto C, Plönes T,
Bittermann N, Rawluk J, Passlick B and Werner M: Simultaneous
multi-antibody staining in non-small cell lung cancer strengthens
diagnostic accuracy especially in small tissue samples. PLoS One.
8:e563332013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kayser G, Sienel W, Kubitz B, Mattern D,
Stickeler E, Passlick B, Werner M and Zur Hausen A: Poor outcome in
primary non-small cell lung cancers is predicted by transketolase
TKTL1 expression. Pathology. 43:719–724. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Schiller JH, Harrington D, Belani CP,
Langer C, Sandler A, Krook J, Zhu J and Johnson DH; Eastern
Cooperative Oncology Group: Comparison of four chemotherapy
regimens for advanced non-small-cell lung cancer. N Engl J Med.
346:92–98. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lee YG, Macoska JA, Korenchuk S and Pienta
KJ: MIM, a potential metastasis suppressor gene in bladder cancer.
Neoplasia. 4:291–294. 2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Loberg RD, Neeley CK, Adam-Day LL, Fridman
Y, St John LN, Nixdorf S, Jackson P, Kalikin LM and Pienta KJ:
Differential expression analysis of MIM (MTSS1) splice variants and
a functional role of MIM in prostate cancer cell biology. Int J
Oncol. 26:1699–1705. 2005.PubMed/NCBI
|
9
|
Mustafa N, Martin TA and Jiang WG:
Metastasis tumour suppressor-1 and the aggressiveness of prostate
cancer cells. Exp Ther Med. 2:157–162. 2011.PubMed/NCBI
|
10
|
Parr C and Jiang WG: Metastasis suppressor
1 (MTSS1) demonstrates prognostic value and anti-metastatic
properties in breast cancer. Eur J Cancer. 45:1673–1683. 2009.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Xie F, Ye L, Chen J, Wu N, Zhang Z, Yang
Y, Zhang L and Jiang WG: The impact of Metastasis Suppressor-1,
MTSS1, on oesophageal squamous cell carcinoma and its clinical
significance. J Transl Med. 9:952011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liu K, Wang G, Ding H, Chen Y, Yu G and
Wang J: Downregulation of metastasis suppressor 1(MTSS1) is
associated with nodal metastasis and poor outcome in Chinese
patients with gastric cancer. BMC Cancer. 10:4282010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yu D, Zhan XH, Zhao XF, Williams MS, Carey
GB, Smith E, Scott D, Zhu J, Guo Y, Cherukuri S, et al: Mice
deficient in MIM expression are predisposed to lymphomagenesis.
Oncogene. 31:3561–3568. 2012. View Article : Google Scholar :
|
14
|
Schemionek M, Kharabi Masouleh B, Klaile
Y, Krug U, Hebestreit K, Schubert C, Dugas M, Büchner T, Wörmann B,
Hiddemann W, et al: Identification of the adapter molecule MTSS1 as
a potential oncogene-specific tumor suppressor in acute myeloid
leukemia. PLoS One. 10:e01257832015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang D, Xu MR, Wang T, Li T and Zhu J:
MTSS1 overexpression correlates with poor prognosis in colorectal
cancer. J Gastrointest Surg. 15:1205–1212. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mertz KD, Pathria G, Wagner C, Saarikangas
J, Sboner A, Romanov J, Gschaider M, Lenz F, Neumann F, Schreiner
W, et al: MTSS1 is a metastasis driver in a subset of human
melanomas. Nat Commun. 5:34652014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pfaffl MW: A new mathematical model for
relative quantification in real-time RT-PCR. Nucleic Acids Res.
29:e452001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen K, Zhang S, Ji Y, Li J, An P, Ren H,
Liang R, Yang J and Li Z: Baicalein inhibits the invasion and
metastatic capabilities of hepatocellular carcinoma cells via
down-regulation of the ERK pathway. PLoS One. 8:e729272013.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Goldstraw P: The 7th Edition of TNM in
Lung Cancer: what now? J Thorac Oncol. 4:671–673. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tischler V, Pfeifer M, Hausladen S,
Schirmer U, Bonde AK, Kristiansen G, Sos ML, Weder W, Moch H,
Altevogt P, et al: L1CAM protein expression is associated with poor
prognosis in non-small cell lung cancer. Mol Cancer. 10:1272011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Li JC, Yang XR, Sun HX, Xu Y, Zhou J, Qiu
SJ, Ke AW, Cui YH, Wang ZJ, Wang WM, et al: : Up-regulation of
Krüppel-like factor 8 promotes tumor invasion and indicates poor
prognosis for hepatocellular carcinoma. Gastroenterology.
139:2146–2157.e12. 2010. View Article : Google Scholar
|
22
|
Pao W: New approaches to targeted therapy
in lung cancer. Proc Am Thorac Soc. 9:72–73. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ishii K, Kinami S, Funaki K, Fujita H,
Ninomiya I, Fushida S, Fujimura T, Nishimura G and Kayahara M:
Detection of sentinel and non-sentinel lymph node micrometastases
by complete serial sectioning and immunohistochemical analysis for
gastric cancer. J Exp Clin Cancer Res. 27:72008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Guan-Zhen Y, Ying C, Can-Rong N, Guo-Dong
W, Jian-Xin Q and Jie-Jun W: Reduced protein expression of
metastasis-related genes (nm23, KISS1, KAI1 and p53) in lymph node
and liver metastases of gastric cancer. Int J Exp Pathol.
88:175–183. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mattila PK, Salminen M, Yamashiro T and
Lappalainen P: Mouse MIM, a tissue-specific regulator of
cytoskeletal dynamics, interacts with ATP-actin monomers through
its C-terminal WH2 domain. J Biol Chem. 278:8452–8459. 2003.
View Article : Google Scholar
|
26
|
Mattila PK, Pykäläinen A, Saarikangas J,
Paavilainen VO, Vihinen H, Jokitalo E and Lappalainen P:
Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich
membranes by an inverse BAR domain-like mechanism. J Cell Biol.
176:953–964. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lee SH, Kerff F, Chereau D, Ferron F, Klug
A and Dominguez R: Structural basis for the actin-binding function
of missing-in-metastasis. Structure. 15:145–155. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Suetsugu S, Murayama K, Sakamoto A,
Hanawa-Suetsugu K, Seto A, Oikawa T, Mishima C, Shirouzu M,
Takenawa T and Yokoyama S: The RAC binding domain/IRSp53-MIM
homology domain of IRSp53 induces RAC-dependent membrane
deformation. J Biol Chem. 281:35347–35358. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Millard TH, Bompard G, Heung MY, Dafforn
TR, Scott DJ, Machesky LM and Fütterer K: Structural basis of
filopodia formation induced by the IRSp53/MIM homology domain of
human IRSp53. EMBO J. 24:240–250. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bompard G, Sharp SJ, Freiss G and Machesky
LM: Involvement of Rac in actin cytoskeleton rearrangements induced
by MIM-B. J Cell Sci. 118:5393–5403. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Pollard TD and Borisy GG: Cellular
motility driven by assembly and disassembly of actin filaments.
Cell. 112:453–465. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhong C, Kinch MS and Burridge K:
Rho-stimulated contractility contributes to the fibroblastic
phenotype of Ras-transformed epithelial cells. Mol Biol Cell.
8:2329–2344. 1997. View Article : Google Scholar : PubMed/NCBI
|
33
|
Scita G, Confalonieri S, Lappalainen P and
Suetsugu S: IRSp53: Crossing the road of membrane and actin
dynamics in the formation of membrane protrusions. Trends Cell
Biol. 18:52–60. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Maecker HT, Todd SC and Levy S: The
tetraspanin superfamily: Molecular facilitators. FASEB J.
11:428–442. 1997.PubMed/NCBI
|
35
|
Kelley LC, Shahab S and Weed SA: Actin
cytoskeletal mediators of motility and invasion amplified and
overexpressed in head and neck cancer. Clin Exp Metastasis.
25:289–304. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Utikal J, Gratchev A, Muller-Molinet I,
Oerther S, Kzhyshkowska J, Arens N, Grobholz R, Kannookadan S and
Goerdt S: The expression of metastasis suppressor MIM/MTSS1 is
regulated by DNA methylation. Int J Cancer. 119:2287–2293. 2006.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Yamashita S, Tsujino Y, Moriguchi K,
Tatematsu M and Ushijima T: Chemical genomic screening for
methylation-silenced genes in gastric cancer cell lines using
5-aza-2′-deoxycytidine treatment and oligonucleotide microarray.
Cancer Sci. 97:64–71. 2006. View Article : Google Scholar
|
38
|
Mazurenko NN, Bliev AIu, Bidzhieva BA,
Peskov DIu, Snigur NV, Savinova EB and Kiselev FL: Loss of
heterozygosity at chromosome 6 as a marker of early genetic
alterations in cervical intraepithelial neoplasias and
microinvasive carcinomas. Mol Biol. 40:436–447. 2006.In Russian.
View Article : Google Scholar
|
39
|
Mark HF, Feldman D, Samy M, Sun C, Das S,
Mark S and Lathrop J: Assessment of chromosome 8 copy number in
cervical cancer by fluorescent in situ hybridization. Exp Mol
Pathol. 66:157–162. 1999. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ocádiz R, Sauceda R, Salcedo M, Ortega V,
Rodríguez H, Gordillo C, Chávez P and Gariglio P: Occurrence of
human papillomavirus type 16 DNA sequences and c-myc oncogene
alterations in uterine-cervix carcinoma. Arch Invest Med.
20:355–362. 1989.
|
41
|
Ocadiz R, Sauceda R, Cruz M, Graef AM and
Gariglio P: High correlation between molecular alterations of the
c-myc oncogene and carcinoma of the uterine cervix. Cancer Res.
47:4173–4177. 1987.PubMed/NCBI
|
42
|
Kersemaekers AM, Fleuren GJ, Kenter GG,
Van den Broek LJ, Uljee SM, Hermans J and Van de Vijver MJ:
Oncogene alterations in carcinomas of the uterine cervix:
Overexpression of the epidermal growth factor receptor is
associated with poor prognosis. Clin Cancer Res. 5:577–586.
1999.PubMed/NCBI
|
43
|
Zhang A, Månér S, Betz R, Angström T,
Stendahl U, Bergman F, Zetterberg A and Wallin KL: Genetic
alterations in cervical carcinomas: Frequent low-level
amplifications of oncogenes are associated with human
papillomavirus infection. Int J Cancer. 101:427–433. 2002.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Wang Y, Zheng E and Ke Y: Studies of loss
of heterozygosity (LOH) in Chinese human gastric cancer tissues.
Zhonghua Zhong Liu Za Zhi. 20:116–118. 1998.In Chinese.
|
45
|
Jones PA and Laird PW: Cancer epigenetics
comes of age. Nat Genet. 21:163–167. 1999. View Article : Google Scholar : PubMed/NCBI
|
46
|
van Duin M, van Marion R, Vissers KJ, Hop
WC, Dinjens WN, Tilanus HW, Siersema PD and van Dekken H:
High-resolution array comparative genomic hybridization of
chromosome 8q: Evaluation of putative progression markers for
gastroesophageal junction adenocarcinomas. Cytogenet Genome Res.
118:130–137. 2007. View Article : Google Scholar : PubMed/NCBI
|
47
|
Bhattacharya N, Singh RK, Mondal S, Roy A,
Mondal R, Roychowdhury S and Panda CK: Analysis of molecular
alterations in chromosome 8 associated with the development of
uterine cervical carcinoma of Indian patients. Gynecol Oncol.
95:352–362. 2004. View Article : Google Scholar : PubMed/NCBI
|
48
|
Fan H, Chen L, Zhang F, Quan Y, Su X, Qiu
X, Zhao Z, Kong KL, Dong S, Song Y, et al: MTSS1, a novel target of
DNA methyltransferase 3B, functions as a tumor suppressor in
hepatocellular carcinoma. Oncogene. 31:2298–2308. 2012. View Article : Google Scholar
|
49
|
Hirata H, Ueno K, Shahryari V, Deng G,
Tanaka Y, Tabatabai ZL, Hinoda Y and Dahiya R: MicroRNA-182-5p
promotes cell invasion and proliferation by down regulating FOXF2,
RECK and MTSS1 genes in human prostate cancer. PLoS One.
8:e555022013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Liu S, Guo W, Shi J, Li N, Yu X, Xue J, Fu
X, Chu K, Lu C, Zhao J, et al: MicroRNA-135a contributes to the
development of portal vein tumor thrombus by promoting metastasis
in hepatocellular carcinoma. J Hepatol. 56:389–396. 2012.
View Article : Google Scholar
|
51
|
Liu Z, Liu J, Segura MF, Shao C, Lee P,
Gong Y, Hernando E and Wei JJ: MiR-182 overexpression in
tumourigenesis of high-grade serous ovarian carcinoma. J Pathol.
228:204–215. 2012. View Article : Google Scholar : PubMed/NCBI
|
52
|
Wang J, Li J, Shen J, Wang C, Yang L and
Zhang X: MicroRNA-182 downregulates metastasis suppressor 1 and
contributes to metastasis of hepatocellular carcinoma. BMC Cancer.
12:2272012. View Article : Google Scholar : PubMed/NCBI
|
53
|
Pasternak K, Nowacka O, Wróbel D,
Pieszyński I, Bryszewska M and Kujawa J: Influence of MLS laser
radiation on erythrocyte membrane fluidity and secondary structure
of human serum albumin. Mol Cell Biochem. 388:261–267. 2014.
View Article : Google Scholar :
|
54
|
Zhou W, Li X, Liu F, Xiao Z, He M, Shen S
and Liu S: MiR-135a promotes growth and invasion of colorectal
cancer via metastasis suppressor 1 in vitro. Acta Biochim Biophys
Sin. 44:838–846. 2012. View Article : Google Scholar : PubMed/NCBI
|
55
|
Machesky LM and Johnston SA: MIM: A
multifunctional scaffold protein. J Mol Med. 85:569–576. 2007.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Xie F, Ye L, Ta M, Zhang L and Jiang WG:
MTSS1: A multifunctional protein and its role in cancer invasion
and metastasis. Front Biosci. 3:621–631. 2011. View Article : Google Scholar
|