1
|
Goodenough DA, Goliger JA and Paul DL:
Connexins, connexons, and intercellular communication. Annu Rev
Biochem. 65:475–502. 1996. View Article : Google Scholar : PubMed/NCBI
|
2
|
Nielsen MS, Axelsen LN, Sorgen PL, Verma
V, Delmar M and Holstein-Rathlou NH: Gap junctions. Compr Physiol.
2:1981–2035. 2012.PubMed/NCBI
|
3
|
Su V and Lau AF: Connexins: Mechanisms
regulating protein levels and intercellular communication. FEBS
Lett. 588:1212–1220. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Vinken M, Vanhaecke T, Papeleu P, Snykers
S, Henkens T and Rogiers V: Connexins and their channels in cell
growth and cell death. Cell Signal. 18:592–600. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Stains JP and Civitelli R: Connexins in
the skeleton. Semin Cell Dev Biol. 50:31–39. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Plotkin LI and Stains JP: Connexins and
pannexins in the skeleton: Gap junctions, hemichannels and more.
Cell Mol Life Sci. 72:2853–2867. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kidder GM and Cyr DG: Roles of connexins
in testis development and spermatogenesis. Semin Cell Dev Biol.
50:22–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Tong X, Han X, Yu B, Yu M, Jiang G, Ji J
and Dong S: Role of gap junction intercellular communication in
testicular leydig cell apoptosis induced by oxaliplatin via the
mitochondrial pathway. Oncol Rep. 33:207–214. 2015.PubMed/NCBI
|
9
|
Yu BB, Dong SY, Yu ML, Jiang GJ, Ji J and
Tong XH: Total flavonoids of Litsea coreana enhance the
cytotoxicity of oxaliplatin by increasing gap junction
intercellular communication. Biol Pharm Bull. 37:1315–1322. 2014.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Takano Y, Iwata H, Yano Y, Miyazawa M,
Virgona N, Sato H, Ueno K and Yano T: Up-regulation of connexin 32
gene by 5-aza-2-deoxycytidine enhances vinblastine-induced
cytotoxicity in human renal carcinoma cells via the activation of
JNK signalling. Biochem Pharmacol. 80:463–470. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Huang RP, Hossain MZ, Huang R, Gano J, Fan
Y and Boynton AL: Connexin 43 (cx43) enhances chemotherapy-induced
apoptosis in human glioblastoma cells. Int J Cancer. 92:130–138.
2001. View Article : Google Scholar : PubMed/NCBI
|
12
|
Thévenin AF, Kowal TJ, Fong JT, Kells RM,
Fisher CG and Falk MM: Proteins and mechanisms regulating
gap-junction assembly, internalization, and degradation.
Physiology. 28:93–116. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kelland L: The resurgence of
platinum-based cancer chemotherapy. Nat Rev Cancer. 7:573–584.
2007. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Wheate NJ, Walker S, Craig GE and Oun R:
The status of platinum anticancer drugs in the clinic and in
clinical trials. Dalton Trans. 39:8113–8127. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Marmiroli P, Cavaletti G, Carozzi V, Riva
B, Lim D and Genazzani AA: Calcium-related neurotoxicity of
oxaliplatin: Understanding the mechanisms to drive therapy. Curr
Med Chem. 22:3682–3694. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Di Cesare Mannelli L, Tenci B, Zanardelli
M, Failli P and Ghelardini C: α7 Nicotinic receptor promotes the
neuroprotective functions of astrocytes against oxaliplatin
neurotoxicity. Neural Plast. 2015:3969082015.PubMed/NCBI
|
17
|
Moutinho C, Martinez-Cardús A, Santos C,
Navarro-Pérez V, Martínez-Balibrea E, Musulen E, Carmona FJ,
Sartore-Bianchi A, Cassingena A, Siena S, et al: Epigenetic
inactivation of the BRCA1 interactor SRBC and resistance to
oxaliplatin in colorectal cancer. J Natl Cancer Inst.
106:djt3222014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Martinez-Balibrea E, Martínez-Cardús A,
Ginés A, de Porras V Ruiz, Moutinho C, Layos L, Manzano JL, Bugés
C, Bystrup S, Esteller M, et al: Tumor-related molecular mechanisms
of oxaliplatin resistance. Mol Cancer Ther. 14:1767–1776. 2015.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Lin X, Stenvang J, Rasmussen MH, Zhu S,
Jensen NF, Tarpgaard LS, Yang G, Belling K, Andersen CL, Li J, et
al: The potential role of Alu Y in the development of resistance to
SN38 (Irinotecan) or oxaliplatin in colorectal cancer. BMC
Genomics. 16:4042015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ginés A, Bystrup S, de Porras V Ruiz,
Guardia C, Musulén E, Martínez-Cardús A, Manzano JL, Layos L, Abad
A and Martínez-Balibrea E: PKM2 subcellular localization is
involved in oxaliplatin resistance acquisition in HT29 human
colorectal cancer cell lines. PLoS One. 10:e01238302015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Fukuoka M, Yano S, Giaccone G, Tamura T,
Nakagawa K, Douillard JY, Nishiwaki Y, Vansteenkiste J, Kudoh S,
Rischin D, et al: Multi-institutional randomized phase II trial of
gefitinib for previously treated patients with advanced
non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin
Oncol. 21:2237–2246. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jackman D, Pao W, Riely GJ, Engelman JA,
Kris MG, Jänne PA, Lynch T, Johnson BE and Miller VA: Clinical
definition of acquired resistance to epidermal growth factor
receptor tyrosine kinase inhibitors in non-small-cell lung cancer.
J Clin Oncol. 28:357–360. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang Y, Yao K, Shi C, Jiang Y, Liu K,
Zhao S, Chen H, Reddy K, Zhang C, Chang X, et al: 244-MPT overcomes
gefitinib resistance in non-small cell lung cancer cells.
Oncotarget. 6:44274–44288. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu W, Ning J, Li C, Hu J, Meng Q, Lu H
and Cai L: Overexpression of Sphk2 is associated with gefitinib
resistance in non-small cell lung cancer. Tumour Biol.
37:6331–6336. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chen KL, Lin CC, Cho YT, Yang CW, Sheen
YS, Tsai HE and Chu CY: Comparison of skin toxic effects associated
with gefitinib, erlotinib, or afatinib treatment for non-small cell
lung cancer. JAMA Dermatol. 152:340–342. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xue C, Hong S, Li N, Feng W, Jia J, Peng
J, Lin D, Cao X, Wang S, Zhang W, et al: Randomized, multicenter
study of gefitinib dose-escalation in advanced non-small-cell lung
cancer patients achieved stable disease after one-month gefitinib
treatment. Sci Rep. 5:106482015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Fisher GA, Kuo T, Ramsey M, Schwartz E,
Rouse RV, Cho CD, Halsey J and Sikic BI: A phase II study of
gefitinib, 5-fluorouracil, leucovorin, and oxaliplatin in
previously untreated patients with metastatic colorectal cancer.
Clin Cancer Res. 14:7074–7079. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Li N, Ou W, Ye X, Sun HB, Zhang L, Fang Q,
Zhang SL, Wang BX and Wang SY: Pemetrexed-carboplatin adjuvant
chemotherapy with or without gefitinib in resected stage IIIA-N2
non-small cell lung cancer harbouring EGFR mutations: A randomized,
phase II study. Ann Surg Oncol. 21:2091–2096. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ji J, Tong XH, Zhang XY, Gao Q, Li BB and
Wu XX: Gefitinib inhibits the growth and induces the apoptosis of
mouse I-10 Leydig testicular cancer cells in vitro. Zhonghua Nan Ke
Xue. 21:797–802. 2015.(In Chinese). PubMed/NCBI
|
30
|
Goldberg GS, Bechberger JF and Naus CC: A
pre-loading method of evaluating gap junctional communication by
fluorescent dye transfer. Biotechniques. 18:490–497.
1995.PubMed/NCBI
|
31
|
Chevallier D, Carette D, Segretain D,
Gilleron J and Pointis G: Connexin 43 a check-point component of
cell proliferation implicated in a wide range of human testis
diseases. Cell Mol Life Sci. 70:1207–1220. 2013.PubMed/NCBI
|
32
|
Todd RC and Lippard SJ: Inhibition of
transcription by platinum antitumor compounds. Metallomics.
1:280–291. 2009. View
Article : Google Scholar : PubMed/NCBI
|
33
|
Hato SV, Khong A, de Vries IJ and
Lesterhuis WJ: Molecular pathways: The immunogenic effects of
platinum-based chemotherapeutics. Clin Cancer Res. 20:2831–2837.
2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Shi Y, Han Y, Xie F, Wang A, Feng X, Li N,
Guo H and Chen D: ASPP2 enhances oxaliplatin (L-OHP)-induced
colorectal cancer cell apoptosis in a p53-independent manner by
inhibiting cell autophagy. J Cell Mol Med. 19:535–543. 2015.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Timme CR, Gruidl M and Yeatman TJ:
Gamma-secretase inhibition attenuates oxaliplatin-induced apoptosis
through increased Mcl-1 and/or Bcl-xL in human colon cancer cells.
Apoptosis. 18:1163–1174. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Shan B, Ma F, Wang M and Xu X:
Down-regulating receptor interacting protein kinase 1 (RIP1)
promotes oxaliplatin-induced Tca8113 cell apoptosis. Med Sci Monit.
21:3089–3094. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Mansure JJ, Nassim R, Chevalier S,
Szymanski K, Rocha J, Aldousari S and Kassouf W: A novel mechanism
of PPAR gamma induction via EGFR signalling constitutes rational
for combination therapy in bladder cancer. PLoS One. 8:e559972013.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Li J, Zhu S, Kozono D, Ng K, Futalan D,
Shen Y, Akers JC, Steed T, Kushwaha D, Schlabach M, et al:
Genome-wide shRNA screen revealed integrated mitogenic signaling
between dopamine receptor D2 (DRD2) and epidermal growth factor
receptor (EGFR) in glioblastoma. Oncotarget. 5:882–893. 2014.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Herbst RS, Fukuoka M and Baselga J:
Gefitinib - a novel targeted approach to treating cancer. Nat Rev
Cancer. 4:956–965. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chang GC, Yu CT, Tsai CH, Tsai JR, Chen
JC, Wu CC, Wu WJ and Hsu SL: An epidermal growth factor inhibitor,
Gefitinib, induces apoptosis through a p53-dependent upregulation
of pro-apoptotic molecules and downregulation of anti-apoptotic
molecules in human lung adenocarcinoma A549 cells. Eur J Pharmacol.
600:37–44. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Long L, Wang J, Lu X, Xu Y, Zheng S, Luo C
and Li Y: Protective effects of scutellarin on type II diabetes
mellitus-induced testicular damages related to reactive oxygen
species/Bcl-2/Bax and reactive oxygen
species/microcirculation/staving pathway in diabetic rat. J
Diabetes Res. 2015:2525302015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Swanton E, Savory P, Cosulich S, Clarke P
and Woodman P: Bcl-2 regulates a caspase-3/caspase-2 apoptotic
cascade in cytosolic extracts. Oncogene. 18:1781–1787. 1999.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Mesnil M, Piccoli C, Tiraby G, Willecke K
and Yamasaki H: Bystander killing of cancer cells by herpes simplex
virus thymidine kinase gene is mediated by connexins. Proc Natl
Acad Sci USA. 93:1831–1835. 1996. View Article : Google Scholar : PubMed/NCBI
|
44
|
Vrionis FD, Wu JK, Qi P, Waltzman M,
Cherington V and Spray DC: The bystander effect exerted by tumor
cells expressing the herpes simplex virus thymidine kinase (HSVtk)
gene is dependent on connexin expression and cell communication via
gap junctions. Gene Ther. 4:577–585. 1997. View Article : Google Scholar : PubMed/NCBI
|
45
|
Jensen R and Glazer PM:
Cell-interdependent cisplatin killing by Ku/DNA-dependent protein
kinase signaling transduced through gap junctions. Proc Natl Acad
Sci USA. 101:6134–6139. 2004. View Article : Google Scholar : PubMed/NCBI
|
46
|
He B, Tong X, Wang L, Wang Q, Ye H, Liu B,
Hong X, Tao L and Harris AL: Tramadol and flurbiprofen depress the
cytotoxicity of cisplatin via their effects on gap junctions. Clin
Cancer Res. 15:5803–5810. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Eugenin EA and Berman JW: Cytochrome c
dysregulation induced by HIV infection of astrocytes results in
bystander apoptosis of uninfected astrocytes by an IP3
and calcium-dependent mechanism. J Neurochem. 127:644–651. 2013.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Decrock E, Krysko DV, Vinken M, Kaczmarek
A, Crispino G, Bol M, Wang N, De Bock M, De Vuyst E, Naus CC, et
al: Transfer of IP3 through gap junctions is critical,
but not sufficient, for the spread of apoptosis. Cell Death Differ.
19:947–957. 2012. View Article : Google Scholar : PubMed/NCBI
|
49
|
Postma FR, Hengeveld T, Alblas J, Giepmans
BN, Zondag GC, Jalink K and Moolenaar WH: Acute loss of cell-cell
communication caused by G protein-coupled receptors: A critical
role for c-Src. J Cell Biol. 140:1199–1209. 1998. View Article : Google Scholar : PubMed/NCBI
|
50
|
Sorgen PL, Duffy HS, Sahoo P, Coombs W,
Delmar M and Spray DC: Structural changes in the carboxyl terminus
of the gap junction protein connexin43 indicates signaling between
binding domains for c-Src and zonula occludens-1. J Biol Chem.
279:54695–54701. 2004. View Article : Google Scholar : PubMed/NCBI
|
51
|
Pahujaa M, Anikin M and Goldberg GS:
Phosphorylation of connexin43 induced by Src: Regulation of gap
junctional communication between transformed cells. Exp Cell Res.
313:4083–4090. 2007. View Article : Google Scholar : PubMed/NCBI
|
52
|
Johnstone SR, Billaud M, Lohman AW, Taddeo
EP and Isakson BE: Posttranslational modifications in connexins and
pannexins. J Membr Biol. 245:319–332. 2012. View Article : Google Scholar : PubMed/NCBI
|
53
|
Lampe PD, TenBroek EM, Burt JM, Kurata WE,
Johnson RG and Lau AF: Phosphorylation of connexin43 on serine368
by protein kinase C regulates gap junctional communication. J Cell
Biol. 149:1503–1512. 2000. View Article : Google Scholar : PubMed/NCBI
|