1
|
Jemal A, Center MM, DeSantis C and Ward
EM: Global patterns of cancer incidence and mortality rates and
trends. Cancer Epidemiol Biomarkers Prev. 19:1893–1907. 2010.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Dunn GP, Old LJ and Schreiber RD: The
immunobiology of cancer immunosurveillance and immunoediting.
Immunity. 21:137–148. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Smyth MJ, Dunn GP and Schreiber RD: Cancer
immunosurveillance and immunoediting: The roles of immunity in
suppressing tumor development and shaping tumor immunogenicity. Adv
Immunol. 90:1–50. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Algars A, Irjala H, Vaittinen S, Huhtinen
H, Sundström J, Salmi M, Ristamäki R and Jalkanen S: Type and
location of tumor-infiltrating macrophages and lymphatic vessels
predict survival of colorectal cancer patients. Int J Cancer.
131:864–873. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Forssell J, Oberg A, Henriksson ML,
Stenling R, Jung A and Palmqvist R: High macrophage infiltration
along the tumor front correlates with improved survival in colon
cancer. Clin Cancer Res. 13:1472–1479. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lackner C, Jukic Z, Tsybrovskyy O, Jatzko
G, Wette V, Hoefler G, Klimpfinger M, Denk H and Zatloukal K:
Prognostic relevance of tumour-associated macrophages and von
Willebrand factor-positive microvessels in colorectal cancer.
Virchows Arch. 445:160–167. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nagorsen D, Voigt S, Berg E, Stein H,
Thiel E and Loddenkemper C: Tumor-infiltrating macrophages and
dendritic cells in human colorectal cancer: Relation to local
regulatory T cells, systemic T-cell response against
tumor-associated antigens and survival. J Transl Med. 5:622007.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhou Q, Peng RQ, Wu XJ, Xia Q, Hou JH,
Ding Y, Zhou QM, Zhang X, Pang ZZ, Wan DS, et al: The density of
macrophages in the invasive front is inversely correlated to liver
metastasis in colon cancer. J Transl Med. 8:132010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Biswas SK and Mantovani A: Macrophage
plasticity and interaction with lymphocyte subsets: Cancer as a
paradigm. Nat Immunol. 11:889–896. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mantovani A, Sica A, Sozzani S, Allavena
P, Vecchi A and Locati M: The chemokine system in diverse forms of
macrophage activation and polarization. Trends Immunol. 25:677–686.
2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Edin S, Wikberg ML, Dahlin AM, Rutegård J,
Öberg Å, Oldenborg PA and Palmqvist R: The distribution of
macrophages with a M1 or M2 phenotype in relation to prognosis and
the molecular characteristics of colorectal cancer. PLoS One.
7:e470452012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chanmee T, Ontong P, Konno K and Itano N:
Tumor-associated macrophages as major players in the tumor
microenvironment. Cancers (Basel). 6:1670–1690. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Allavena P, Sica A, Solinas G, Porta C and
Mantovani A: The inflammatory micro-environment in tumor
progression: The role of tumor-associated macrophages. Crit Rev
Oncol Hematol. 66:1–9. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yoshikawa F, Banno Y, Otani Y, Yamaguchi
Y, Nagakura-Takagi Y, Morita N, Sato Y, Saruta C, Nishibe H,
Sadakata T, et al: Phospholipase D family member 4, a transmembrane
glycoprotein with no phospholipase D activity, expression in spleen
and early postnatal microglia. PLoS One. 5:e139322010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Otani Y, Yamaguchi Y, Sato Y, Furuichi T,
Ikenaka K, Kitani H and Baba H: PLD4 is involved in phagocytosis of
microglia: Expression and localization changes of PLD4 are
correlated with activation state of microglia. PLoS One.
6:e275442011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Terao C, Ohmura K, Kawaguchi Y, Nishimoto
T, Kawasaki A, Takehara K, Furukawa H, Kochi Y, Ota Y, Ikari K, et
al: PLD4 as a novel susceptibility gene for systemic sclerosis in a
Japanese population. Arthritis Rheum. 65:472–480. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Okada Y, Terao C, Ikari K, Kochi Y, Ohmura
K, Suzuki A, Kawaguchi T, Stahl EA, Kurreeman FAS, Nishida N, et
al: Meta-analysis identifies nine new loci associated with
rheumatoid arthritis in the Japanese population. Nat Genet.
44:511–516. 2012. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Krieg T and Takehara K: Skin disease: A
cardinal feature of systemic sclerosis. Rheumatology (Oxford).
48:(Suppl 3). iii14–iii18. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Sugihara H, Ishimoto T, Watanabe M,
Sawayama H, Iwatsuki M, Baba Y, Komohara Y, Takeya M and Baba H:
Identification of miR-30e* regulation of Bmi1 expression mediated
by tumor-associated macrophages in gastrointestinal cancer. PLoS
One. 8:e818392013. View Article : Google Scholar : PubMed/NCBI
|
20
|
De Palma M and Lewis CE: Macrophage
regulation of tumor responses to anticancer therapies. Cancer Cell.
23:277–286. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
DeNardo DG, Brennan DJ, Rexhepaj E,
Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD,
Junaid SA, et al: Leukocyte complexity predicts breast cancer
survival and functionally regulates response to chemotherapy.
Cancer Discov. 1:54–67. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Prada CE, Jousma E, Rizvi TA, Wu J, Dunn
RS, Mayes DA, Cancelas JA, Dombi E, Kim MO, West BL, et al:
Neurofibroma-associated macrophages play roles in tumor growth and
response to pharmacological inhibition. Acta Neuropathol.
125:159–168. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang B, Li Q, Qin L, Zhao S, Wang J and
Chen X: Transition of tumor-associated macrophages from MHC class
II(hi) to MHC class II(low) mediates tumor progression in mice. BMC
Immunol. 12:432011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Steidl C, Lee T, Shah SP, Farinha P, Han
G, Nayar T, Delaney A, Jones SJ, Iqbal J, Weisenburger DD, et al:
Tumor-associated macrophages and survival in classic Hodgkins
Lymphoma. N Engl J Med. 362:875–885. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hari DM, Leung AM, Lee JH, Sim MS, Vuong
B, Chiu CG and Bilchik AJ: AJCC Cancer Staging Manual 7th edition
criteria for colon cancer: do the complex modifications improve
prognostic assessment? J Am Coll Surg. 217:181–190. 2013.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Mantovani A, Biswas SK, Galdiero MR, Sica
A and Locati M: Macrophage plasticity and polarization in tissue
repair and remodelling. J Pathol. 229:176–185. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nucera S, Biziato D and De Palma M: The
interplay between macrophages and angiogenesis in development,
tissue injury and regeneration. Int J Dev Biol. 55:495–503. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Pollard JW: Trophic macrophages in
development and disease. Nat Rev Immunol. 9:259–270. 2009.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Tang X, Mo C, Wang Y, Wei D and Xiao H:
Anti-tumour strategies aiming to target tumour-associated
macrophages. Immunology. 138:93–104. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sica A and Bronte V: Altered macrophage
differentiation and immune dysfunction in tumor development. J Clin
Invest. 117:1155–1166. 2007. View
Article : Google Scholar : PubMed/NCBI
|
31
|
Shime H, Matsumoto M, Oshiumi H, Tanaka S,
Nakane A, Iwakura Y, Tahara H, Inoue N and Seya T: Toll-like
receptor 3 signaling converts tumor-supporting myeloid cells to
tumoricidal effectors. Proc Natl Acad Sci USA. 109:2066–2071. 2012.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Pan XQ: The mechanism of the anticancer
function of M1 macrophages and their use in the clinic. Chin J
Cancer. 31:557–563. 2012.PubMed/NCBI
|