Antitumor effect of the combination of manumycin A and Immodin is associated with antiplatelet activity and increased granulocyte tumor infiltration in a 4T1 breast tumor model
- Authors:
- Peter Solár
- Veronika Sačková
- Gabriela Hrčková
- Vlasta Demečková
- Monika Kassayová
- Bianka Bojková
- Dagmar Mudroňová
- Soňa Gancarčíková
- Rastislav Jendželovský
- Peter Fedoročko
-
Affiliations: Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 041 54 Košice, Slovak Republic, Institute of Parasitology of Slovak Academy of Science, 040 01 Košice, Slovak Republic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovak Republic - Published online on: November 22, 2016 https://doi.org/10.3892/or.2016.5265
- Pages: 368-378
This article is mentioned in:
Abstract
Hara M, Akasaka K, Akinaga S, Okabe M, Nakano H, Gomez R, Wood D, Uh M and Tamanoi F: Identification of Ras farnesyltransferase inhibitors by microbial screening. Proc Natl Acad Sci USA. 90:2281–2285. 1993. View Article : Google Scholar : PubMed/NCBI | |
Ito T, Kawata S, Tamura S, Igura T, Nagase T, Miyagawa JI, Yamazaki E, Ishiguro H and Matasuzawa Y: Suppression of human pancreatic cancer growth in BALB/c nude mice by manumycin, a farnesyl:protein transferase inhibitor. Jpn J Cancer Res. 87:113–116. 1996. View Article : Google Scholar : PubMed/NCBI | |
She M and Jim Yeung SC: Combining a matrix metalloproteinase inhibitor, a farnesyltransferase inhibitor, and a taxane improves survival in an anaplastic thyroid cancer model. Cancer Lett. 238:197–201. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dixit D, Sharma V, Ghosh S, Koul N, Mishra PK and Sen E: Manumycin inhibits STAT3, telomerase activity, and growth of glioma cells by elevating intracellular reactive oxygen species generation. Free Radic Biol Med. 47:364–374. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sears KT, Daino H and Carey GB: Reactive oxygen species-dependent destruction of MEK and Akt in Manumycin stimulated death of lymphoid tumor and myeloma cell lines. Int J Cancer. 122:1496–1505. 2008. View Article : Google Scholar : PubMed/NCBI | |
Singha PK, Pandeswara S, Venkatachalam MA and Saikumar P: Manumycin A inhibits triple-negative breast cancer growth through LC3-mediated cytoplasmic vacuolation death. Cell Death Dis. 4:e4572013. View Article : Google Scholar : PubMed/NCBI | |
Sugita M, Sugita H and Kaneki M: Farnesyltransferase inhibitor, Manumycin A, prevents atherosclerosis development and reduces oxidative stress in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 27:1390–1395. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sharma V, Shaheen SS, Dixit D and Sen E: Farnesyltransferase inhibitor manumycin targets IL1β-Ras-HIF-1α axis in tumor cells of diverse origin. Inflammation. 35:516–519. 2012. View Article : Google Scholar : PubMed/NCBI | |
Saha B and Nandi D: Farnesyltransferase inhibitors reduce Ras activation and ameliorate acetaminophen-induced liver injury in mice. Hepatology. 50:1547–1557. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cecrdlova E, Petrickova K, Kolesar L, Petricek M, Sekerkova A, Svachova V and Striz I: Manumycin A downregulates release of proinflammatory cytokines from TNF alpha stimulated human monocytes. Immunol Lett. 169:8–14. 2016. View Article : Google Scholar : PubMed/NCBI | |
Berrón-Pérez R, Chávez-Sánchez R, Estrada-García I, Espinosa-Padilla S, Cortez-Gómez R, Serrano-Miranda E, Ondarza-Aguilera R, Pérez-Tapia M, Olvera B Pineda, Jiménez-Martínez Mdel C, et al: Indications, usage, and dosage of the transfer factor. Rev Alerg Mex. 54:134–139. 2007.PubMed/NCBI | |
Arnaudov A and Kostova Z: Dialysable leukocyte extracts in immunotherapy. Biotechnol Biotechnol Equip. 29:1017–1023. 2015. View Article : Google Scholar | |
Cherenko SO, Reva ОA, Rekalova OM, Kibizova NI, Yasir SG and Matvienko YO: Immunotherapy with leukocyte immunomodulator dialysate in patients with multidrug-resistant tuberculosis. Asthma and Allergies. 3:13–20. 2013. | |
Viza D, Fudenberg HH, Palareti A, Ablashi D, De Vinci C and Pizza G: Transfer factor: An overlooked potential for the prevention and treatment of infectious diseases. Folia Biol. 59:53–67. 2013. | |
Homberg TA, Lara RI, Pérez-Tapia SM and Jiménez Martínez MDC: Dialyzable leukocyte extracts as adjuvant treatment for allergic rhinitis. World Allergy Organ J. 7:(Suppl 1). P52014. View Article : Google Scholar | |
Gómez Vera J, Chávez Sánchez R, Flores Sandoval G, Orea Solano M, López Tiro JJ, Santiago Santos AD, Espinosa Padilla S, Espinosa Rosales F, Huerta J, Ortega Martell JA, et al: Transfer factor and allergy. Rev Alerg Mex. 57:208–214. 2010.PubMed/NCBI | |
Lokaj J, Pekarek J and Kuklinek P: Leukocyte Dialysates and Transfer FactorMayer V and Borvác J: Slovak Academy of Science; Bratislava: pp. 516–525. 1987 | |
Georgescu C: Effect of long-term therapy with transfer factor in rheumatoid arthritis. Med Interne. 23:135–140. 1985.PubMed/NCBI | |
Juarez PC: Effect of Transferon as an adjuvant in the treatment of osteosarcoma (In Spanish) (unpublished dissertation). National Polytechnic Institute; Mexico City: 2011 | |
Pilotti V, Mastrorilli M, Pizza G, De Vinci C, Busutti L, Palareti A, Gozzetti G and Cavallari A: Transfer factor as an adjuvant to non-small cell lung cancer (NSCLC) therapy. Biotherapy. 9:117–121. 1996. View Article : Google Scholar : PubMed/NCBI | |
Franco-Molina MA, Mendoza-Gamboa E, Zapata-Benavides P, Vera-García ME, Castillo-Tello P, García de la Fuente A, Mendoza RD, Garza RG, Támez-Guerra RS and Rodríguez-Padilla C: IMMUNEPOTENT CRP (bovine dialyzable leukocyte extract) adjuvant immunotherapy: A phase I study in non-small cell lung cancer patients. Cytotherapy. 10:490–496. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lara HH, Turrent LI, Garza-Treviño EN, Tamez-Guerra R and Rodriguez-Padilla C: Clinical and immunological assessment in breast cancer patients receiving anticancer therapy and bovine dialyzable leukocyte extract as an adjuvant. Exp Ther Med. 1:425–431. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pineda B, Estrada-Parra S, Pedraza-Medina B, Rodriguez-Ropon A, Pérez R and Arrieta O: Interstitial transfer factor as adjuvant immunotherapy for experimental glioma. J Exp Clin Cancer Res. 24:575–583. 2005.PubMed/NCBI | |
Whyte RI, Schork MA, Sloan H, Orringer MB and Kirsh MM: Adjuvant treatment using transfer factor for bronchogenic carcinoma: Long-term follow-up. Ann Thorac Surg. 53:391–396. 1992. View Article : Google Scholar : PubMed/NCBI | |
Pizza G, De Vinci C, Cuzzocrea D, Menniti D, Aiello E, Maver P, Corrado G, Romagnoli P, Dragoni E, LoConte G, et al: A preliminary report on the use of transfer factor for treating stage D3 hormone-unresponsive metastatic prostate cancer. Biotherapy. 9:123–132. 1996. View Article : Google Scholar : PubMed/NCBI | |
Lal I, Dittus K and Holmes CE: Platelets, coagulation and fibrinolysis in breast cancer progression. Breast Cancer Res. 15:2072013. View Article : Google Scholar : PubMed/NCBI | |
Bambace NM and Holmes CE: The platelet contribution to cancer progression. J Thromb Haemost. 9:237–249. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gay LJ and Felding-Habermann B: Contribution of platelets to tumour metastasis. Nat Rev Cancer. 11:123–134. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lin RJ, Afshar-Kharghan V and Schafer AI: Paraneoplastic thrombocytosis: The secrets of tumor self-promotion. Blood. 124:184–187. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kerr BA, Miocinovic R, Smith AK, Klein EA and Byzova TV: Comparison of tumor and microenvironment secretomes in plasma and in platelets during prostate cancer growth in a xenograft model. Neoplasia. 12:388–396. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ostberg JR, Ertel BR and Lanphere JA: An important role for granulocytes in the thermal regulation of colon tumor growth. Immunol Invest. 34:259–272. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fernández-Aceñero MJ, Galindo-Gallego M, Sanz J and Aljama A: Prognostic influence of tumor-associated eosinophilic infiltrate in colorectal carcinoma. Cancer. 88:1544–1548. 2000. View Article : Google Scholar : PubMed/NCBI | |
Klintrup K, Mäkinen JM, Kauppila S, Väre PO, Melkko J, Tuominen H, Tuppurainen K, Mäkelä J, Karttunen TJ and Mäkinen MJ: Inflammation and prognosis in colorectal cancer. Eur J Cancer. 41:2645–2654. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Ren H, Wang L, Ning Z, Zhuang Y, Gan J, Chen S, Zhou D, Zhu H, Tan D, et al: Clinical impact of tumor-infiltrating inflammatory cells in primary small cell esophageal carcinoma. Int J Mol Sci. 15:9718–9734. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tepper RI, Coffman RL and Leder P: An eosinophil-dependent mechanism for the antitumor effect of interleukin-4. Science. 257:548–551. 1992. View Article : Google Scholar : PubMed/NCBI | |
Giovarelli M, Cappello P, Forni G, Salcedo T, Moore PA, LeFleur DW, Nardelli B, Di Carlo E, Lollini PL, Ruben S, et al: Tumor rejection and immune memory elicited by locally released LEC chemokine are associated with an impressive recruitment of APCs, lymphocytes, and granulocytes. J Immunol. 164:3200–3206. 2000. View Article : Google Scholar : PubMed/NCBI | |
Carretero R, Sektioglu IM, Garbi N, Salgado OC, Beckhove P and Hämmerling GJ: Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8+ T cells. Nat Immunol. 16:609–617. 2015. View Article : Google Scholar : PubMed/NCBI | |
Llewellyn BD: An improved Sirius red method for amyloid. J Med Lab Technol. 27:308–309. 1970.PubMed/NCBI | |
Ma J, Liu L, Che G, Yu N, Dai F and You Z: The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer. 10:1122010. View Article : Google Scholar : PubMed/NCBI | |
Pommier A, Audemard A, Durand A, Lengagne R, Delpoux A, Martin B, Douguet L, Le Campion A, Kato M, Avril MF, et al: Inflammatory monocytes are potent antitumor effectors controlled by regulatory CD4+ T cells. Proc Natl Acad Sci USA. 110:13085–13090. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chanmee T, Ontong P, Konno K and Itano N: Tumor-associated macrophages as major players in the tumor microenvironment. Cancers. 6:1670–1690. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, Damti P, Lumbroso D, Polyansky L, Sionov RV, et al: Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Reports. 10:562–573. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tao K, Fang M, Alroy J and Sahagian GG: Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer. 8:2282008. View Article : Google Scholar : PubMed/NCBI | |
DuPre' SA and Hunter KW Jr: Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: Association with tumor-derived growth factors. Exp Mol Pathol. 82:12–24. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu H and Tabuchi T, Takemura A, Kasuga T, Motohashi G, Hiraishi K, Katano M, Nakada I, Ubukata H and Tabuchi T: The granulocyte/lymphocyte ratio as an independent predictor of tumour growth, metastasis and progression: Its clinical applications. Mol Med Rep. 1:699–704. 2008.PubMed/NCBI | |
Rochet NM, Markovic SN and Porrata LF: The role of complete blood cell count in prognosis-Watch this space! Oncol Hematol Rev. 8:76–82. 2012. View Article : Google Scholar | |
Benatar T, Cao MY, Lee Y, Li H, Feng N, Gu X, Lee V, Jin H, Wang M, Der S, et al: Virulizin induces production of IL-17E to enhance antitumor activity by recruitment of eosinophils into tumors. Cancer Immunol Immunother. 57:1757–1769. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kousis PC, Henderson BW, Maier PG and Gollnick SO: Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils. Cancer Res. 67:10501–10510. 2007. View Article : Google Scholar : PubMed/NCBI | |
Eruslanov EB, Bhojnagarwala PS, Quatromoni JG, Stephen TL, Ranganathan A, Deshpande C, Akimova T, Vachani A, Litzky L, Hancock WW, et al: Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J Clin Invest. 124:5466–5480. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mete S: Targeting tumor microenvironment by zoledronate as a novel therapeutic approach in cancer (dissertation). University of Zurich, Faculty of Science; Zurich: 2011 | |
Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, Scadden DT and Wagner DD: Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci USA. 109:13076–13081. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schmidt H, Bastholt L, Geertsen P, Christensen IJ, Larsen S, Gehl J and von der Maase H: Elevated neutrophil and monocyte counts in peripheral blood are associated with poor survival in patients with metastatic melanoma: A prognostic model. Br J Cancer. 93:273–278. 2005. View Article : Google Scholar : PubMed/NCBI | |
Atzpodien J and Reitz M: Peripheral blood neutrophils as independent immunologic predictor of response and long-term survival upon immunotherapy in metastatic renal-cell carcinoma. Cancer Biother Radiopharm. 23:129–134. 2008. View Article : Google Scholar : PubMed/NCBI | |
Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, Verstegen NJ, Ciampricotti M, Hawinkels LJ, Jonkers J, et al: IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 522:345–348. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shimada H, Takiguchi N, Kainuma O, Soda H, Ikeda A, Cho A, Miyazaki A, Gunji H, Yamamoto H and Nagata M: High preoperative neutrophil-lymphocyte ratio predicts poor survival in patients with gastric cancer. Gastric Cancer. 13:170–176. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shibutani M, Maeda K, Nagahara H, Noda E, Ohtani H, Nishiguchi Y and Hirakawa K: A high preoperative neutrophil-to-lymphocyte ratio is associated with poor survival in patients with colorectal cancer. Anticancer Res. 33:3291–3294. 2013.PubMed/NCBI | |
Chen J, Deng Q, Pan Y, He B, Ying H, Sun H, Liu X and Wang S: Prognostic value of neutrophil-to-lymphocyte ratio in breast cancer. FEBS Open Bio. 5:502–507. 2015. View Article : Google Scholar : PubMed/NCBI | |
Koh CH, Bhoo-Pathy N, Ng KL, Jabir RS, Tan GH, See MH, Jamaris S and Taib NA: Utility of pre-treatment neutrophil-lymphocyte ratio and platelet-lymphocyte ratio as prognostic factors in breast cancer. Br J Cancer. 113:150–158. 2015. View Article : Google Scholar : PubMed/NCBI | |
Templeton AJ, McNamara MG, Šeruga B, Vera-Badillo FE, Aneja P, Ocaña A, Leibowitz-Amit R, Sonpavde G, Knox JJ, Tran B, et al: Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: A systematic review and meta-analysis. J Natl Cancer Inst. 106:dju1242014. View Article : Google Scholar : PubMed/NCBI | |
Ueta E, Osaki T, Yoneda K, Yamamoto T and Umazume M: Influence of inductive chemoradiotherapy on salivary polymorphonuclear leukocyte (SPMN) functions in oral cancer. J Oral Pathol Med. 23:418–422. 1994. View Article : Google Scholar : PubMed/NCBI | |
Baskic D, Arsenijevic NN and Acimovic LD: Monocyte phagocytic function in patients with breast cancer during therapy. Meeting abstracts, 23rd Congress of the International Association of Breast Cancer Research. 13–16 June; Dusseldorf, Germany. http://breast-cancer-research.com/content/3/S1 | |
Reshma K, Bharathi B, Rao AV, Dinesh M and Vasudevan DM: Phagocytosis: A marker of decreased immune response in radiation treated oral cancers. Biomed Res. 20:75–77. 2009. | |
Cron J and Jansa P: Role of phagocytic cells in cancer. Folia Haematol Int Mag Klin Morphol Blutforsch. 108:481–527. 1981.PubMed/NCBI | |
Karagöz B, Bilgi O, Alacacioğlu A, Ozgün A, Sayan O, Erikçi AA and Kandemir EG: Mean platelet volume increase after tamoxifen, but not after anastrazole in adjuvant therapy of breast cancer. Med Oncol. 27:199–202. 2010. View Article : Google Scholar : PubMed/NCBI | |
Taucher S, Salat A, Gnant M, Kwasny W, Mlineritsch B, Menzel RC, Schmid M, Smola MG, Stierer M, Tausch C, et al: Austrian Breast and Colorectal Cancer Study Group: Impact of pretreatment thrombocytosis on survival in primary breast cancer. Thromb Haemost. 89:1098–1106. 2003.PubMed/NCBI | |
Brockmann MA, Giese A, Mueller K, Kaba FJ, Lohr F, Weiss C, Gottschalk S, Nolte I, Leppert J, Tuettenberg J, et al: Preoperative thrombocytosis predicts poor survival in patients with glioblastoma. Neuro Oncol. 9:335–342. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lu CC, Chang KW, Chou FC, Cheng CY and Liu CJ: Association of pretreatment thrombocytosis with disease progression and survival in oral squamous cell carcinoma. Oral Oncol. 43:283–288. 2007. View Article : Google Scholar : PubMed/NCBI | |
Stravodimou A and Voutsadakis IA: Pretreatment thrombocytosis as a prognostic factor in metastatic breast cancer. Int J Breast Cancer. 2013:2895632013. View Article : Google Scholar : PubMed/NCBI | |
Digklia A and Voutsadakis IA: Thrombocytosis as a prognostic marker in stage III and IV serous ovarian cancer. Obstet Gynecol Sci. 57:457–463. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gasic GJ, Gasic TB and Stewart CC: Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci USA. 61:46–52. 1968. View Article : Google Scholar : PubMed/NCBI | |
Li R, Ren M, Chen N, Luo M, Deng X, Xia J, Yu G, Liu J, He B, Zhang X, et al: Presence of intratumoral platelets is associated with tumor vessel structure and metastasis. BMC Cancer. 14:1672014. View Article : Google Scholar : PubMed/NCBI | |
Mikami J, Kurokawa Y, Takahashi T, Miyazaki Y, Yamasaki M, Miyata H, Nakajima K, Takiguchi S, Mori M and Doki Y: Antitumor effect of antiplatelet agents in gastric cancer cells: An in vivo and in vitro study. Gastric Cancer. 19:817–826. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stone RL, Nick AM, McNeish IA, Balkwill F, Han HD, Bottsford-Miller J, Rupairmoole R, Armaiz-Pena GN, Pecot CV, Coward J, et al: Paraneoplastic thrombocytosis in ovarian cancer. N Engl J Med. 366:610–618. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sitia G, Aiolfi R, Di Lucia P, Mainetti M, Fiocchi A, Mingozzi F, Esposito A, Ruggeri ZM, Chisari FV, Iannacone M, et al: Antiplatelet therapy prevents hepatocellular carcinoma and improves survival in a mouse model of chronic hepatitis B. Proc Natl Acad Sci USA. 109:E2165–E2172. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rachidi S, Wallace K, Day TA, Alberg AJ and Li Z: Lower circulating platelet counts and antiplatelet therapy independently predict better outcomes in patients with head and neck squamous cell carcinoma. J Hematol Oncol. 7:652014. View Article : Google Scholar : PubMed/NCBI | |
Adler HL, McCurdy MA, Kattan MW, Timme TL, Scardino PT and Thompson TC: Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma. J Urol. 161:182–187. 1999. View Article : Google Scholar : PubMed/NCBI | |
Petanidis S, Anestakis D, Argyraki M, Hadzopoulou-Cladaras M and Salifoglou A: Differential expression of IL-17, 22 and 23 in the progression of colorectal cancer in patients with K-ras mutation: Ras signal inhibition and crosstalk with GM-CSF and IFN-γ. PLoS One. 8:e736162013. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Jin X, He X, Pan L, Zhang X and Zhao Y: Macrophages support splenic erythropoiesis in 4T1 tumor-bearing mice. PLoS One. 10:e01219212015. View Article : Google Scholar : PubMed/NCBI | |
Yilmaz M, Cimilli G, Saritemur M, Demircan F, Isaoglu U, Kisaoglu A and Emet M: Diagnostic accuracy of neutrophil/lymphocyte ratio, red cell distribution width and platelet distribution width in ovarian torsion. J Obstet Gynaecol. 36:218–222. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kritchevsky SB and Kritchevsky D: Serum cholesterol and cancer risk: An epidemiologic perspective. Annu Rev Nutr. 12:391–416. 1992. View Article : Google Scholar : PubMed/NCBI | |
Hussein MA and Boshra SA: Antitumor and structure antioxidant activity relationship of colchicine on Ehrlich ascites carcinoma (EAC) in female mice. Int J Drug Deliv. 5:430–437. 2013. | |
Furberg AS, Jasienska G, Bjurstam N, Torjesen PA, Emaus A, Lipson SF, Ellison PT and Thune I: Metabolic and hormonal profiles: HDL cholesterol as a plausible biomarker of breast cancer risk. The Norwegian EBBA Study. Cancer Epidemiol Biomarkers Prev. 14:33–40. 2005. | |
Jafri H, Alsheikh-Ali AA and Karas RH: Baseline and on-treatment high-density lipoprotein cholesterol and the risk of cancer in randomized controlled trials of lipid-altering therapy. J Am Coll Cardiol. 55:2846–2854. 2010. View Article : Google Scholar : PubMed/NCBI | |
Touvier M, Fassier P, His M, Norat T, Chan DS, Blacher J, Hercberg S, Galan P, Druesne-Pecollo N and Latino-Martel P: Cholesterol and breast cancer risk: A systematic review and meta-analysis of prospective studies. Br J Nutr. 114:347–357. 2015. View Article : Google Scholar : PubMed/NCBI | |
Robinson JG: Low high-density lipoprotein cholesterol and chronic disease risk marker or causal? J Am Coll Cardiol. 55:2855–2857. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ravichandran P, Elangovan V and Govindasamy S: Chemopreventive effect of quercetin in sarcoma-180-bearing mice. J Clin Biochem Nutr. 22:149–154. 1997. View Article : Google Scholar |