1
|
Furnari FB, Fenton T, Bachoo RM, Mukasa A,
Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, et al:
Malignant astrocytic glioma: Genetics, biology, and paths to
treatment. Genes Dev. 21:2683–2710. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Louis DN, Ohgaki H, Wiestler OD, Cavenee
WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007
WHO classification of tumours of the central nervous system. Acta
Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Adamson C, Kanu OO, Mehta AI, Di C, Li N,
Mattox AK and Bigner DD: Glioblastoma multiforme: A review of where
we have been and where we are going. Expert Opin Investig Drugs.
18:1061–1083. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Siebzehnrubl FA, Reynolds BA, Vescovi A,
Steindler DA and Deleyrolle LP: The origins of glioma: E Pluribus
Unum? Glia. 59:1135–1147. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Nazarenko I, Hede SM, He X, Hedrén A,
Thompson J, Lindström MS and Nistér M: PDGF and PDGF receptors in
glioma. Ups J Med Sci. 117:99–112. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Koul D: PTEN signaling pathways in
glioblastoma. Cancer Biol Ther. 7:1321–1325. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wang SI, Puc J, Li J, Bruce JN, Cairns P,
Sidransky D and Parsons R: Somatic mutations of PTEN in
glioblastoma multiforme. Cancer Res. 57:4183–4186. 1997.PubMed/NCBI
|
8
|
Chang JY, Hu Y, Siegel E, Stanley L and
Zhou YH: PAX6 increases glioma cell susceptibility to detachment
and oxidative stress. J Neurooncol. 84:9–19. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Jacques TS, Swales A, Brzozowski MJ,
Henriquez NV, Linehan JM, Mirzadeh Z, O'Malley C, Naumann H,
Alvarez-Buylla A and Brandner S: Combinations of genetic mutations
in the adult neural stem cell compartment determine brain tumour
phenotypes. EMBO J. 29:222–235. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sanai N, Alvarez-Buylla A and Berger MS:
Neural stem cells and the origin of gliomas. N Engl J Med.
353:811–822. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Berger J, Berger S, Tuoc TC, D'Amelio M,
Cecconi F, Gorski JA, Jones KR, Gruss P and Stoykova A: Conditional
activation of Pax6 in the developing cortex of transgenic mice
causes progenitor apoptosis. Development. 134:1311–1322. 2007.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Götz M, Stoykova A and Gruss P: Pax6
controls radial glia differentiation in the cerebral cortex.
Neuron. 21:1031–1044. 1998. View Article : Google Scholar : PubMed/NCBI
|
13
|
Heins N, Malatesta P, Cecconi F, Nakafuku
M, Tucker KL, Hack MA, Chapouton P, Barde YA and Götz M: Glial
cells generate neurons: The role of the transcription factor Pax6.
Nat Neurosci. 5:308–315. 2002. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Osumi N, Shinohara H, Numayama-Tsuruta K
and Maekawa M: Concise review: Pax6 transcription factor
contributes to both embryonic and adult neurogenesis as a
multifunctional regulator. Stem Cells. 26:1663–1672. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Quinn JC, Molinek M, Martynoga BS, Zaki
PA, Faedo A, Bulfone A, Hevner RF, West JD and Price DJ: Pax6
controls cerebral cortical cell number by regulating exit from the
cell cycle and specifies cortical cell identity by a cell
autonomous mechanism. Dev Biol. 302:50–65. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Warren N, Caric D, Pratt T, Clausen JA,
Asavaritikrai P, Mason JO, Hill RE and Price DJ: The transcription
factor, Pax6, is required for cell proliferation and
differentiation in the developing cerebral cortex. Cereb Cortex.
9:627–635. 1999. View Article : Google Scholar : PubMed/NCBI
|
17
|
Haubst N, Berger J, Radjendirane V, Graw
J, Favor J, Saunders GF, Stoykova A and Götz M: Molecular
dissection of Pax6 function: The specific roles of the paired
domain and homeodomain in brain development. Development.
131:6131–6140. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shimizu N, Watanabe H, Kubota J, Wu J,
Saito R, Yokoi T, Era T, Iwatsubo T, Watanabe T, Nishina S, et al:
Pax6-5a promotes neuronal differentiation of murine embryonic stem
cells. Biol Pharm Bull. 32:999–1003. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhou YH, Tan F, Hess KR and Yung WK: The
expression of PAX6, PTEN, vascular endothelial growth factor, and
epidermal growth factor receptor in gliomas: Relationship to tumor
grade and survival. Clin Cancer Res. 9:3369–3375. 2003.PubMed/NCBI
|
20
|
Zhou YH, Wu X, Tan F, Shi YX, Glass T, Liu
TJ, Wathen K, Hess KR, Gumin J, Lang F, et al: PAX6 suppresses
growth of human glioblastoma cells. J Neurooncol. 71:223–229. 2005.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Sansom SN, Griffiths DS, Faedo A, Kleinjan
DJ, Ruan Y, Smith J, van Heyningen V, Rubenstein JL and Livesey FJ:
The level of the transcription factor Pax6 is essential for
controlling the balance between neural stem cell self-renewal and
neurogenesis. PLoS Genet. 5:e10005112009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Esquela-Kerscher A and Slack FJ: Oncomirs
- microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Garzon R, Calin GA and Croce CM: MicroRNAs
in cancer. Annu Rev Med. 60:167–179. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lavon I, Zrihan D, Granit A, Einstein O,
Fainstein N, Cohen MA, Cohen MA, Zelikovitch B, Shoshan Y, Spektor
S, et al: Gliomas display a microRNA expression profile reminiscent
of neural precursor cells. Neuro Oncol. 12:422–433. 2010.PubMed/NCBI
|
25
|
Li H, Kloosterman W and Fekete DM:
MicroRNA-183 family members regulate sensorineural fates in the
inner ear. J Neurosci. 30:3254–3263. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xu S, Witmer PD, Lumayag S, Kovacs B and
Valle D: MicroRNA (miRNA) transcriptome of mouse retina and
identification of a sensory organ-specific miRNA cluster. J Biol
Chem. 282:25053–25066. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Fendler A, Jung M, Stephan C, Erbersdobler
A, Jung K and Yousef GM: The antiapoptotic function of miR-96 in
prostate cancer by inhibition of FOXO1. PLoS One. 8:e808072013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu Z, Liu J, Segura MF, Shao C, Lee P,
Gong Y, Hernando E and Wei JJ: MiR-182 overexpression in
tumourigenesis of high-grade serous ovarian carcinoma. J Pathol.
228:204–215. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mi D, Carr CB, Georgala PA, Huang YT,
Manuel MN, Jeanes E, Niisato E, Sansom SN, Livesey FJ, Theil T, et
al: Pax6 exerts regional control of cortical progenitor
proliferation via direct repression of Cdk6 and hypophosphorylation
of pRb. Neuron. 78:269–284. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Moskwa P, Buffa FM, Pan Y, Panchakshari R,
Gottipati P, Muschel RJ, Beech J, Kulshrestha R, Abdelmohsen K,
Weinstock DM, et al: miR-182-mediated downregulation of BRCA1
impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell.
41:210–220. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Song L, Liu L, Wu Z, Li Y, Ying Z, Lin C,
Wu J, Hu B, Cheng SY, Li M, et al: TGF-β induces miR-182 to sustain
NF-κB activation in glioma subsets. J Clin Invest. 122:3563–3578.
2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Weeraratne SD, Amani V, Teider N,
Pierre-Francois J, Winter D, Kye MJ, Sengupta S, Archer T, Remke M,
Bai AH, et al: Pleiotropic effects of miR-183~96~182 converge to
regulate cell survival, proliferation and migration in
medulloblastoma. Acta Neuropathol. 123:539–552. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jiang L, Mao P, Song L, Wu J, Huang J, Lin
C, Yuan J, Qu L, Cheng SY and Li J: miR-182 as a prognostic marker
for glioma progression and patient survival. Am J Pathol.
177:29–38. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tanaka H, Sasayama T, Tanaka K, Nakamizo
S, Nishihara M, Mizukawa K, Kohta M, Koyama J, Miyake S, Taniguchi
M, et al: MicroRNA-183 upregulates HIF-1α by targeting isocitrate
dehydrogenase 2 (IDH2) in glioma cells. J Neurooncol. 111:273–283.
2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Tang H, Bian Y, Tu C, Wang Z, Yu Z, Liu Q,
Xu G, Wu M and Li G: The miR-183/96/182 cluster regulates oxidative
apoptosis and sensitizes cells to chemotherapy in gliomas. Curr
Cancer Drug Targets. 13:221–231. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Paul V, Tonchev AB, Henningfeld KA,
Pavlakis E, Rust B, Pieler T and Stoykova A: Scratch2 modulates
neurogenesis and cell migration through antagonism of bHLH proteins
in the developing neocortex. Cereb Cortex. 24:754–772. 2014.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Tsang J, Zhu J and van Oudenaarden A:
MicroRNA-mediated feedback and feedforward loops are recurrent
network motifs in mammals. Mol Cell. 26:753–767. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang HM, Kuang S, Xiong X, Gao T, Liu C
and Guo AY: Transcription factor and microRNA co-regulatory loops:
Important regulatory motifs in biological processes and diseases.
Brief Bioinform. 16:45–58. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Aota S, Nakajima N, Sakamoto R, Watanabe
S, Ibaraki N and Okazaki K: Pax6 autoregulation mediated by direct
interaction of Pax6 protein with the head surface ectoderm-specific
enhancer of the mouse Pax6 gene. Dev Biol. 257:1–13. 2003.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Pinson J, Mason JO, Simpson TI and Price
DJ: Regulation of the Pax6: Pax6(5a) mRNA ratio in the developing
mammalian brain. BMC Dev Biol. 5:13–17. 2005. View Article : Google Scholar : PubMed/NCBI
|
41
|
Pinson J, Simpson TI, Mason JO and Price
DJ: Positive autoregulation of the transcription factor Pax6 in
response to increased levels of either of its major isoforms, Pax6
or Pax6(5a), in cultured cells. BMC Dev Biol. 6:25–34. 2006.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Guan H, Song L, Cai J, Huang Y, Wu J, Yuan
J, Li J and Li M: Sphingosine kinase 1 regulates the Akt/FOXO3a/Bim
pathway and contributes to apoptosis resistance in glioma cells.
PLoS One. 6:e199462011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kiselev Y, Eriksen TE, Forsdahl S, Nguyen
LH and Mikkola I: 3T3 cell lines stably expressing Pax6 or Pax6(5a)
- a new tool used for identification of common and isoform specific
target genes. PLoS One. 7:e319152012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhang H, Li W, Sun S, Yu S, Zhang M and
Zou F: Inhibition of sphingosine kinase 1 suppresses proliferation
of glioma cells under hypoxia by attenuating activity of
extracellular signal-regulated kinase. Cell Prolif. 45:167–175.
2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang J, Lu JP, Suter DM, Krause KH, Fini
ME, Chen B and Lu Q: Isoform- and dose-sensitive feedback
interactions between paired box 6 gene and delta-catenin in cell
differentiation and death. Exp Cell Res. 316:1070–1081. 2010.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Frattini V, Trifonov V, Chan JM, Castano
A, Lia M, Abate F, Keir ST, Ji AX, Zoppoli P, Niola F, et al: The
integrated landscape of driver genomic alterations in glioblastoma.
Nat Genet. 45:1141–1149. 2013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Estivill-Torrus G, Pearson H, van
Heyningen V, Price DJ and Rashbass P: Pax6 is required to regulate
the cell cycle and the rate of progression from symmetrical to
asymmetrical division in mammalian cortical progenitors.
Development. 129:455–466. 2002.PubMed/NCBI
|
48
|
Sakurai K and Osumi N: The
neurogenesis-controlling factor, Pax6, inhibits proliferation and
promotes maturation in murine astrocytes. J Neurosci. 28:4604–4612.
2008. View Article : Google Scholar : PubMed/NCBI
|
49
|
Appolloni I, Calzolari F, Barilari M,
Terrile M, Daga A and Malatesta P: Antagonistic modulation of
gliomagenesis by Pax6 and Olig2 in PDGF-induced oligodendroglioma.
Int J Cancer. 131:E1078–E1087. 2012. View Article : Google Scholar : PubMed/NCBI
|