1
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Howlader N, Noone AM, Krapcho M, Garshell
J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z,
et al: SEER Cancer Statistics Review. 1975–2012. National Cancer
Institute; 2015 http://seer.cancer.gov/csr/1975_2012/Accessed.
November 18–2015
|
3
|
Schiller JH, Harrington D, Belani CP,
Langer C, Sandler A, Krook J, Zhu J and Johnson DH: Eastern
Cooperative Oncology Group: Comparison of four chemotherapy
regimens for advanced non-small-cell lung cancer. N Engl J Med.
346:92–98. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Unoki M and Nakamura Y: Growth-suppressive
effects of BPOZ and EGR2, two genes involved in the PTEN signaling
pathway. Oncogene. 20:4457–4465. 2001. View Article : Google Scholar : PubMed/NCBI
|
5
|
Valente EM, Abou-Sleiman PM, Caputo V,
Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR,
Healy DG, et al: Hereditary early-onset Parkinson's disease caused
by mutations in PINK1. Science. 304:1158–1160. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Mills RD, Sim CH, Mok SS, Mulhern TD,
Culvenor JG and Cheng HC: Biochemical aspects of the
neuroprotective mechanism of PTEN-induced kinase-1 (PINK1). J
Neurochem. 105:18–33. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Arena G, Gelmetti V, Torosantucci L,
Vignone D, Lamorte G, De Rosa P, Cilia E, Jonas EA and Valente EM:
PINK1 protects against cell death induced by mitochondrial
depolarization, by phosphorylating Bcl-xL and impairing its
pro-apoptotic cleavage. Cell Death Differ. 20:920–930. 2013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Pridgeon JW, Olzmann JA, Chin LS and Li L:
PINK1 protects against oxidative stress by phosphorylating
mitochondrial chaperone TRAP1. PLoS Biol. 5:e1722007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wood-Kaczmar A, Gandhi S, Yao Z, Abramov
AY, Miljan EA, Keen G, Stanyer L, Hargreaves I, Klupsch K, Deas E,
et al: PINK1 is necessary for long term survival and mitochondrial
function in human dopaminergic neurons. PLoS One. 3:e24552008.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Klinkenberg M, Thurow N, Gispert S,
Ricciardi F, Eich F, Prehn JH, Auburger G and Kögel D: Enhanced
vulnerability of PARK6 patient skin fibroblasts to apoptosis
induced by proteasomal stress. Neuroscience. 166:422–434. 2010.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Wu Z, Sawada T, Shiba K, Liu S, Kanao T,
Takahashi R, Hattori N, Imai Y and Lu B: Tricornered/NDR kinase
signaling mediates PINK1-directed mitochondrial quality control and
tissue maintenance. Genes Dev. 27:157–162. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lee HJ and Chung KC: PINK1 positively
regulates IL-1β-mediated signaling through Tollip and IRAK1
modulation. J Neuroinflammation. 9:2712012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Akundi RS, Huang Z, Eason J, Pandya JD,
Zhi L, Cass WA, Sullivan PG and Büeler H: Increased mitochondrial
calcium sensitivity and abnormal expression of innate immunity
genes precede dopaminergic defects in Pink1-deficient mice. PLoS
One. 6:e160382011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Berthier A, Navarro S, Jiménez-Sáinz J,
Roglá I, Ripoll F, Cervera J and Pulido R: PINK1 displays
tissue-specific subcellular location and regulates apoptosis and
cell growth in breast cancer cells. Hum Pathol. 42:75–87. 2011.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Murata H, Sakaguchi M, Jin Y, Sakaguchi Y,
Futami J, Yamada H, Kataoka K and Huh NH: A new cytosolic pathway
from a Parkinson disease-associated kinase, BRPK/PINK1: Activation
of AKT via mTORC2. J Biol Chem. 286:7182–7189. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
O'Flanagan CH, Morais VA, Wurst W, De
Strooper B and O'Neill C: The Parkinson's gene PINK1 regulates cell
cycle progression and promotes cancer-associated phenotypes.
Oncogene. 34:1363–1374. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Akundi RS, Zhi L and Büeler H: PINK1
enhances insulin-like growth factor-1-dependent Akt signaling and
protection against apoptosis. Neurobiol Dis. 45:469–478. 2012.
View Article : Google Scholar : PubMed/NCBI
|
18
|
MacKeigan JP, Murphy LO and Blenis J:
Sensitized RNAi screen of human kinases and phosphatases identifies
new regulators of apoptosis and chemoresistance. Nat Cell Biol.
7:591–600. 2005. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Rathos MJ, Khanwalkar H, Joshi K, Manohar
SM and Joshi KS: Potentiation of in vitro and in vivo antitumor
efficacy of doxorubicin by cyclin-dependent kinase inhibitor
P276-00 in human non-small cell lung cancer cells. BMC Cancer.
13:292013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yang L, Zhou Y, Li Y, Zhou J, Wu Y, Cui Y,
Yang G and Hong Y: Mutations of p53 and KRAS activate NF-κB to
promote chemoresistance and tumorigenesis via dysregulation of cell
cycle and suppression of apoptosis in lung cancer cells. Cancer
Lett. 357:520–526. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lee HJ, Jang SH, Kim H, Yoon JH and Chung
KC: PINK1 stimulates interleukin-1β-mediated inflammatory signaling
via the positive regulation of TRAF6 and TAK1. Cell Mol Life Sci.
69:3301–3315. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ni T, Mao G, Xue Q, Liu Y, Chen B, Cui X,
Lv L, Jia L, Wang Y and Ji L: Upregulated expression of ILF2 in
non-small cell lung cancer is associated with tumor cell
proliferation and poor prognosis. J Mol Histol. 46:325–335. 2015.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Xue Q, Zhou Y, Wan C, Lv L, Chen B, Cao X,
Ju G, Huang Y, Ni R and Mao G: Epithelial membrane protein 3 is
frequently shown as promoter methylation and functions as a tumor
suppressor gene in non-small cell lung cancer. Exp Mol Pathol.
95:313–318. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
O'Flanagan CH, Morais VA and O'Neill C:
PINK1, cancer and neurodegeneration. Oncoscience. 3:1–2.
2016.PubMed/NCBI
|
25
|
O'Flanagan CH and O'Neill C: Pink1
signalling in cancer biology. Biochim Biophys Acta. 1846:590–598.
2014.PubMed/NCBI
|
26
|
Martin SA, Hewish M, Sims D, Lord CJ and
Ashworth A: Parallel high-throughput RNA interference screens
identify PINK1 as a potential therapeutic target for the treatment
of DNA mismatch repair-deficient cancers. Cancer Res. 71:1836–1848.
2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lin W and Kang UJ: Structural determinants
of PINK1 topology and dual subcellular distribution. BMC Cell Biol.
11:902010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Deng H, Jankovic J, Guo Y, Xie W and Le W:
Small interfering RNA targeting the PINK1 induces apoptosis in
dopaminergic cells SH-SY5Y. Biochem Biophys Res Commun.
337:1133–1138. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Cui T, Fan C, Gu L, Gao H, Liu Q, Zhang T,
Qi Z, Zhao C, Zhao H, Cai Q, et al: Silencing of PINK1 induces
mitophagy via mitochondrial permeability transition in dopaminergic
MN9D cells. Brain Res. 1394:1–13. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lee KS, Wu Z, Song Y, Mitra SS, Feroze AH,
Cheshier SH and Lu B: Roles of PINK1, mTORC2, and mitochondria in
preserving brain tumor-forming stem cells in a noncanonical Notch
signaling pathway. Genes Dev. 27:2642–2647. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Su JL, Cheng X, Yamaguchi H, Chang YW, Hou
CF, Lee DF, Ko HW, Hua KT, Wang YN, Hsiao M, et al:
Foxo3a-dependent mechanism of e1a-induced chemosensitization.
Cancer Res. 71:6878–6887. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sunters A, Madureira PA, Pomeranz KM,
Aubert M, Brosens JJ, Cook SJ, Burgering BM, Coombes RC and Lam EW:
Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer
cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res.
66:212–220. 2006. View Article : Google Scholar : PubMed/NCBI
|