1
|
Warburg O: The Metabolism of Tumors.
Arnold Constable; London: pp. 254–270. 1930
|
2
|
Yamamoto T, Seino Y, Fukumoto H, Koh G,
Yano H, Inagaki N, Yamada Y, Inoue K, Manabe T and Imura H:
Over-expression of facilitative glucose transporter genes in human
cancer. Biochem Biophys Res Commun. 170:223–230. 1990. View Article : Google Scholar : PubMed/NCBI
|
3
|
Pelicano H, Martin DS, Xu RH and Huang P:
Glycolysis inhibition for anticancer treatment. Oncogene.
25:4633–4646. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kaplan O, Navon G, Lyon RC, Faustino PJ,
Straka EJ and Cohen JS: Effects of 2-deoxyglucose on drug-sensitive
and drug-resistant human breast cancer cells: Toxicity and magnetic
resonance spectroscopy studies of metabolism. Cancer Res.
50:544–551. 1990.PubMed/NCBI
|
5
|
Laszlo J, Humphreys SR and Goldin A:
Effects of glucose analogues (2-deoxy-D-glucose,
2-deoxy-D-galactose) on experimental tumors. J Natl Cancer Inst.
24:267–281. 1960.PubMed/NCBI
|
6
|
Aft RL, Zhang FW and Gius D: Evaluation of
2-deoxy-D-glucose as a chemotherapeutic agent: Mechanism of cell
death. Br J Cancer. 87:805–812. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bell SE, Quinn DM, Kellett GL and Warr JR:
2-Deoxy-D-glucose preferentially kills multidrug-resistant human KB
carcinoma cell lines by apoptosis. Br J Cancer. 78:1464–1470. 1998.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Lee YJ, Galoforo SS, Berns CM, Tong WP,
Kim HR and Corry PM: Glucose deprivation-induced cytotoxicity in
drug resistant human breast carcinoma MCF-7/ADR cells: Role of
c-myc and bcl-2 in apoptotic cell death. J Cell Sci. 110:681–686.
1997.PubMed/NCBI
|
9
|
Reutter M, Emons G and Gründker C:
Starving tumors: Inhibition of glycolysis reduces viability of
human endometrial and ovarian cancer cells and enhances antitumor
efficacy of GnRH receptor-targeted therapies. Int J Gynecol Cancer.
23:34–40. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Giannarelli R, Aragona M, Coppelli A and
Del Prato S: Reducing insulin resistance with metformin: The
evidence today. Diabetes Metab. 29:6S28–6S35. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Nathan DM, Buse JB, Davidson MB,
Ferrannini E, Holman RR, Sherwin R and Zinman B: American Diabetes
Association; European Association for Study of Diabetes: Medical
management of hyperglycemia in type 2 diabetes: A consensus
algorithm for the initiation and adjustment of therapy: A consensus
statement of the American Diabetes Association and the European
Association for the Study of Diabetes. Diabetes Care. 32:193–203.
2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Anisimov VN, Berstein LM, Egormin PA,
Piskunova TS, Popovich IG, Zabezhinski MA, Kovalenko IG, Poroshina
TE, Semenchenko AV, Provinciali M, et al: Effect of metformin on
life span and on the development of spontaneous mammary tumors in
HER-2/neu transgenic mice. Exp Gerontol. 40:685–693. 2005.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Anisimov VN, Egormin PA, Piskunova TS,
Popovich IG, Tyndyk ML, Yurova MN, Zabezhinski MA, Anikin IV,
Karkach AS and Romanyukha AA: metformin extends life span of
HER-2/neu transgenic mice and in combination with melatonin
inhibits growth of transplantable tumors in vivo. Cell Cycle.
9:188–197. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ben Sahra I, Laurent K, Loubat A,
Giorgetti-Peraldi S, Colosetti P, Auberger P, Tanti JF, Le
Marchand-Brustel Y and Bost F: The antidiabetic drug metformin
exerts an antitumoral effect in vitro and in vivo through a
decrease of cyclin D1 level. Oncogene. 27:3576–3586. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Janjetovic K, Harhaji-Trajkovic L,
Misirkic-Marjanovic M, Vucicevic L, Stevanovic D, Zogovic N,
Sumarac-Dumanovic M, Micic D and Trajkovic V: In vitro and in vivo
anti-melanoma action of metformin. Eur J Pharmacol. 668:373–382.
2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Memmott RM, Mercado JR, Maier CR, Kawabata
S, Fox SD and Dennis PA: Metformin prevents tobacco
carcinogen-induced lung tumorigenesis. Cancer Prev Res.
3:1066–1076. 2010. View Article : Google Scholar
|
17
|
Rattan R, Graham RP, Maguire JL, Giri S
and Shridhar V: Metformin suppresses ovarian cancer growth and
metastasis with enhancement of cisplatin cytotoxicity in vivo.
Neoplasia. 13:483–491. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhou G, Myers R, Li Y, Chen Y, Shen X,
Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, et al: Role of
AMP-activated protein kinase in mechanism of metformin action. J
Clin Invest. 108:1167–1174. 2001. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Camacho L, Dasgupta A and Jiralerspong S:
Metformin in breast cancer - an evolving mystery. Breast Cancer
Res. 17:882015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Emons G, Ortmann O, Becker M, Irmer G,
Springer B, Laun R, Hölzel F, Schulz KD and Schally AV: High
affinity binding and direct antiproliferative effects of LHRH
analogues in human ovarian cancer cell lines. Cancer Res.
53:5439–5446. 1993.PubMed/NCBI
|
21
|
Emons G, Schröder B, Ortmann O, Westphalen
S, Schulz KD and Schally AV: High affinity binding and direct
antiproliferative effects of luteinizing hormone-releasing hormone
analogs in human endometrial cancer cell lines. J Clin Endocrinol.
77:1458–1464. 1993. View Article : Google Scholar
|
22
|
Irmer G, Bürger C, Müller R, Ortmann O,
Peter U, Kakar SS, Neill JD, Schulz KD and Emons G: Expression of
the messenger RNAs for luteinizing hormone-releasing hormone (LHRH)
and its receptor in human ovarian epithelial carcinoma. Cancer Res.
55:817–822. 1995.PubMed/NCBI
|
23
|
Raez LE, Papadopoulos K, Ricart AD,
Chiorean EG, Dipaola RS, Stein MN, Lima Rocha CM, Schlesselman JJ,
Tolba K, Langmuir VK, et al: A phase I dose-escalation trial of
2-deoxy-D-glucose alone or combined with docetaxel in patients with
advanced solid tumors. Cancer Chemother Pharmacol. 71:523–530.
2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
FDA: Metformin: Official FDA Information.
Side-Effects And Uses. 2011.https://www.fda.gov/ohrms/dockets/dailys/02/May02/053102/800471e6.pdfAccession
date: October 25, 2016.
|
25
|
Shank JJ, Yang K, Ghannam J, Cabrera L,
Johnston CJ, Reynolds RK and Buckanovich RJ: Metformin targets
ovarian cancer stem cells in vitro and in vivo. Gynecol Oncol.
127:390–397. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang F and Aft RL: Chemosensitizing and
cytotoxic effects of 2-deoxy-D-glucose on breast cancer cells. J
Cancer Res Ther. 5:(Suppl 1). S41–S43. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cheong JH, Park ES, Liang J, Dennison JB,
Tsavachidou D, Nguyen-Charles C, Cheng Wa K, Hall H, Zhang D, Lu Y,
et al: Dual inhibition of tumor energy pathway by 2-deoxyglucose
and metformin is effective against a broad spectrum of preclinical
cancer models. Mol Cancer Ther. 10:2350–2362. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ben Sahra I, Laurent K, Giuliano S,
Larbret F, Ponzio G, Gounon P, Le Marchand-Brustel Y,
Giorgetti-Peraldi S, Cormont M, Bertolotto C, et al: Targeting
cancer cell metabolism: The combination of metformin and
2-deoxyglucose induces p53-dependent apoptosis in prostate cancer
cells. Cancer Res. 70:2465–2475. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Andrzejewski S, Gravel SP, Pollak M and
St-Pierre J: Metformin directly acts on mitochondria to alter
cellular bioenergetics. Cancer Metab. 2:122014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bridges HR, Jones AJ, Pollak MN and Hirst
J: Effects of metformin and other biguanides on oxidative
phosphorylation in mitochondria. Biochem J. 462:475–487. 2014.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Drahota Z, Palenickova E, Endlicher R,
Milerova M, Brejchova J, Vosahlikova M, Svoboda P, Kazdova L,
Kalous M, Cervinkova Z, et al: Biguanides inhibit complex I, II and
IV of rat liver mitochondria and modify their functional
properties. Physiol Res. 63:1–11. 2014.PubMed/NCBI
|
32
|
El-Mir MY, Nogueira V, Fontaine E, Avéret
N, Rigoulet M and Leverve X: Dimethylbiguanide inhibits cell
respiration via an indirect effect targeted on the respiratory
chain complex I. J Biol Chem. 275:223–228. 2000. View Article : Google Scholar : PubMed/NCBI
|
33
|
Owen MR, Doran E and Halestrap AP:
Evidence that metformin exerts its anti-diabetic effects through
inhibition of complex 1 of the mitochondrial respiratory chain.
Biochem J. 348:607–614. 2000. View Article : Google Scholar : PubMed/NCBI
|
34
|
He L and Wondisford FE: metformin action:
Concentrations matter. Cell Metab. 21:159–162. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Brown J: Effects of 2-deoxyglucose on
carbohydrate metablism: Review of the literature and studies in the
rat. Metabolism. 11:1098–1112. 1962.PubMed/NCBI
|
36
|
DiPaola RS, Dvorzhinski D, Thalasila A,
Garikapaty V, Doram D, May M, Bray K, Mathew R, Beaudoin B, Karp C,
et al: Therapeutic starvation and autophagy in prostate cancer: A
new paradigm for targeting metabolism in cancer therapy. Prostate.
68:1743–1752. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
McComb RB and Yushok WD: Metabolism of
ascites tumor cells. Iv. Enzymatic reactions involved in
adenosinetriphosphate degradation induced by 2-deoxyglucose. Cancer
Res. 24:198–205. 1964.PubMed/NCBI
|
38
|
Lalau JD and Race JM: Lactic acidosis in
metformin therapy. Drugs. 58:(Suppl 1). 55–82. 1999. View Article : Google Scholar : PubMed/NCBI
|