1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhang R, Zhang Y, Wen F, Wu K and Zhao S:
Analysis of pathological types and clinical epidemiology of 6,058
patients with lung cancer. Zhongguo Fei Ai Za Zhi. 19:129–135.
2016.(In Chinese). PubMed/NCBI
|
3
|
Miller KD, Siegel RL, Lin CC, Mariotto AB,
Kramer JL, Rowland JH, Stein KD, Alteri R and Jemal A: Cancer
treatment and survivorship statistics, 2016. CA Cancer J Clin.
66:271–289. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ettinger DS, Wood DE, Akerley W, Bazhenova
LA, Borghaei H, Camidge DR, Cheney RT, Chirieac LR, D'Amico TA,
Dilling TJ, et al: NCCN Guidelines Insights: Non-Small Cell Lung
Cancer, Version 4. 2016. J Natl Compr Canc Netw. 14:255–264.
2016.PubMed/NCBI
|
5
|
Ettinger DS, Wood DE, Akerley W, Bazhenova
LA, Borghaei H, Camidge DR, Cheney RT, Chirieac LR, D'Amico TA,
Demmy TL, et al: National comprehensive cancer network: Non-Small
Cell Lung Cancer, version 6.2015. J Natl Compr Canc Netw.
13:515–524. 2015.PubMed/NCBI
|
6
|
Polo V and Besse B: Maintenance strategies
in stage IV non-small-cell lung cancer (NSCLC): In which patients,
with which drugs? Ann Oncol. 25:1283–1293. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Davidoff AJ, Tang M, Seal B and Edelman
MJ: Chemotherapy and survival benefit in elderly patients with
advanced non-small-cell lung cancer. J Clin Oncol. 28:2191–2197.
2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Hollis M, Nair K, Vyas A, Chaturvedi LS,
Gambhir S and Vyas D: MicroRNAs potential utility in colon cancer:
Early detection, prognosis, and chemosensitivity. World J
Gastroenterol. 21:8284–8292. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lu J, Getz G, Miska EA, Alvarez-Saavedra
E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA,
et al: MicroRNA expression profiles classify human cancers. Nature.
435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen Y, Gao Y, Zhang K, Li C, Pan Y, Chen
J, Wang R and Chen L: MicroRNAs as regulators of cisplatin
resistance in lung cancer. Cell Physiol Biochem. 37:1869–1880.
2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhou P, Jiang N, Zhang GX and Sun Q:
MiR-203 inhibits tumor invasion and metastasis in gastric cancer by
ATM. Acta Biochim Biophys Sin. 48:696–703. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zheng J, Wang F, Lu S and Wang X: LASP-1,
regulated by miR-203, promotes tumor proliferation and
aggressiveness in human non-small cell lung cancer. Exp Mol Pathol.
100:116–124. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tang R, Zhong T, Dang Y, Zhang X, Li P and
Chen G: Association between downexpression of MiR-203 and poor
prognosis in non-small cell lung cancer patients. Clin Transl
Oncol. 18:360–368. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lin J, Lin Y, Fan L, Kuang W, Zheng L, Wu
J, Shang P, Wang Q and Tan J: miR-203 inhibits cell proliferation
and promotes cisplatin induced cell death in tongue squamous
cancer. Biochem Biophys Res Commun. 473:382–387. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang C, Wang X, Liang H, Wang T, Yan X,
Cao M, Wang N, Zhang S, Zen K, Zhang C, et al: miR-203 inhibits
cell proliferation and migration of lung cancer cells by targeting
PKCα. PLoS One. 8:e739852013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hu H, Xu Z, Li C, Xu C, Lei Z, Zhang HT
and Zhao J: MiR-145 and miR-203 represses TGF-β-induced
epithelial-mesenchymal transition and invasion by inhibiting SMAD3
in non-small cell lung cancer cells. Lung Cancer. 97:87–94. 2016.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang N, Liang H, Zhou Y, Wang C, Zhang S,
Pan Y, Wang Y, Yan X, Zhang J, Zhang CY, et al: miR-203 suppresses
the proliferation and migration and promotes the apoptosis of lung
cancer cells by targeting SRC. PLoS One. 9:e1055702014. View Article : Google Scholar : PubMed/NCBI
|
19
|
You HY, Xie XM, Zhang WJ, Zhu HL and Jiang
FZ: Berberine modulates cisplatin sensitivity of human gastric
cancer cells by upregulation of miR-203. In Vitro Cell Dev Biol
Anim. 52:857–863. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ru P, Steele R, Hsueh EC and Ray RB:
Anti-miR-203 upregulates SOCS3 expression in breast cancer cells
and enhances cisplatin chemosensitivity. Genes Cancer. 2:720–727.
2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu Y, Gao S, Chen X, Liu M, Mao C and
Fang X: Overexpression of miR-203 sensitizes paclitaxel
(Taxol)-resistant colorectal cancer cells through targeting the
salt-inducible kinase 2 (SIK2). Tumour Biol. 37:12231–12239. 2016.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Niehrs C: Function and biological roles of
the Dickkopf family of Wnt modulators. Oncogene. 25:7469–7481.
2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xia Y, He Z, Liu B, Wang P and Chen Y:
Downregulation of Meg3 enhances cisplatin resistance of lung cancer
cells through activation of the WNT/β-catenin signaling pathway.
Mol Med Rep. 12:4530–4537. 2015.PubMed/NCBI
|
24
|
Jia X, Li N, Peng C, Deng Y, Wang J, Deng
M, Lu M, Yin J, Zheng G, Liu H, et al: miR-493 mediated DKK1
down-regulation confers proliferation, invasion and
chemo-resistance in gastric cancer cells. Oncotarget. 7:7044–7054.
2016.PubMed/NCBI
|
25
|
Huang Y, Yang X, Zhao F, Shen Q, Wang Z,
Lv X, Hu B, Yu B, Fan J and Qin W: Overexpression of Dickkopf-1
predicts poor prognosis for patients with hepatocellular carcinoma
after orthotopic liver transplantation by promoting cancer
metastasis and recurrence. Med Oncol. 31:9662014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li S, Qin X, Guo X, Cui A, He Y, Wei S,
Wang X and Shan B: Dickkopf-1 is oncogenic and involved in invasive
growth in non small cell lung cancer. PLoS One. 8:e849442013.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Salim H, Zong D, Hååg P, Novak M, Mörk B,
Lewensohn R, Lundholm L and Viktorsson K: DKK1 is a potential novel
mediator of cisplatin-refractoriness in non-small cell lung cancer
cell lines. BMC Cancer. 15:6282015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Menezes ME, Devine DJ, Shevde LA and
Samant RS: Dickkopf1: A tumor suppressor or metastasis promoter?
Int J Cancer. 130:1477–1483. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hirata H, Hinoda Y, Nakajima K, Kawamoto
K, Kikuno N, Ueno K, Yamamura S, Zaman MS, Khatri G, Chen Y, et al:
Wnt antagonist DKK1 acts as a tumor suppressor gene that
induces apoptosis and inhibits proliferation in human renal cell
carcinoma. Int J Cancer. 128:1793–1803. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tung MC, Lin PL, Cheng YW, Wu DW, Yeh SD,
Chen CY and Lee H: Reduction of microRNA-184 by E6 oncoprotein
confers cisplatin resistance in lung cancer via increasing Bcl-2.
Oncotarget. 7:32362–32374. 2016.PubMed/NCBI
|
31
|
Li W, Wang W, Ding M, Zheng X, Ma S and
Wang X: MiR-1244 sensitizes the resistance of non-small cell lung
cancer A549 cell to cisplatin. Cancer Cell Int. 16:302016.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Li JH, Luo N, Zhong MZ, Xiao ZQ, Wang JX,
Yao XY, Peng Y and Cao J: Inhibition of microRNA-196a might reverse
cisplatin resistance of A549/DDP non-small-cell lung cancer cell
line. Tumour Biol. 37:2387–2394. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Fu WF, Chen WB, Dai L, Yang GP, Jiang ZY,
Pan L, Zhao J and Chen G: Inhibition of miR-141 reverses cisplatin
resistance in non-small cell lung cancer cells via upregulation of
programmed cell death protein 4. Eur Rev Med Pharmacol Sci.
20:2565–2572. 2016.PubMed/NCBI
|
34
|
Wang Y, Ha M, Liu J, Li P, Zhang W and
Zhang X: Role of BCL2-associated athanogene in resistance to
platinum-based chemotherapy in non-small-cell lung cancer. Oncol
Lett. 11:984–990. 2016.PubMed/NCBI
|
35
|
Qiu T, Zhou L, Wang T, Xu J, Wang J, Chen
W, Zhou X, Huang Z, Zhu W, Shu Y, et al: miR-503 regulates the
resistance of non-small cell lung cancer cells to cisplatin by
targeting Bcl-2. Int J Mol Med. 32:593–598. 2013.PubMed/NCBI
|
36
|
Xu S, Huang H, Chen YN, Deng YT, Zhang B,
Xiong XD, Yuan Y, Zhu Y, Huang H, Xie L, et al: DNA damage
responsive miR-33b-3p promoted lung cancer cells survival and
cisplatin resistance by targeting p21WAF1/CIP1. Cell
Cycle. 15:2920–2930. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang S, Liu F, Zhu J, Chen P, Liu H, Liu Q
and Han J: DNA repair genes ERCC1 and BRCA1 expression in non-small
cell lung cancer chemotherapy drug resistance. Med Sci Monit.
22:1999–2005. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Im JY, Lee KW, Won KJ, Kim BK, Ban HS,
Yoon SH, Lee YJ, Kim YJ, Song KB and Won M: DNA damage-induced
apoptosis suppressor (DDIAS), a novel target of NFATc1, is
associated with cisplatin resistance in lung cancer. Biochim
Biophys Acta. 1863:40–49. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Shen L, Yang M, Lin Q, Zhang Z, Miao C and
Zhu B: SKA1 regulates the metastasis and cisplatin resistance of
non-small cell lung cancer. Oncol Rep. 35:2561–2568.
2016.PubMed/NCBI
|
40
|
Qi K, Li Y, Li X, Lei X, Wang B, Zhang L
and Chu X: Id4 promotes cisplatin resistance in lung cancer through
the p38 MAPK pathway. Anticancer Drugs. 27:970–978. 2016.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Hu CF, Huang YY, Wang YJ and Gao FG:
Upregulation of ABCG2 via the PI3K-Akt pathway contributes to
acidic microenvironment-induced cisplatin resistance in A549 and
LTEP-a-2 lung cancer cells. Oncol Rep. 36:455–461. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Sun W, Ma Y, Chen P and Wang D:
MicroRNA-10a silencing reverses cisplatin resistance in the
A549/cisplatin human lung cancer cell line via the transforming
growth factor-β/Smad2/STAT3/STAT5 pathway. Mol Med Rep.
11:3854–3859. 2015.PubMed/NCBI
|
43
|
Wang Y, Wen L, Zhao SH, Ai ZH, Guo JZ and
Liu WC: FoxM1 expression is significantly associated with
cisplatin-based chemotherapy resistance and poor prognosis in
advanced non-small cell lung cancer patients. Lung Cancer.
79:173–179. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Liu Y, Chen X, Gu Y, Zhu L, Qian Y, Pei D,
Zhang W and Shu Y: FOXM1 overexpression is associated with
cisplatin resistance in non-small cell lung cancer and mediates
sensitivity to cisplatin in A549 cells via the JNK/mitochondrial
pathway. Neoplasma. 62:61–71. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wu HM, Jiang ZF, Ding PS, Shao LJ and Liu
RY: Hypoxia-induced autophagy mediates cisplatin resistance in lung
cancer cells. Sci Rep. 5:122912015. View Article : Google Scholar : PubMed/NCBI
|