1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rustgi AK and El-Serag HB: Esophageal
carcinoma. N Engl J Med. 371:2499–2509. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Crusz SM and Balkwill FR: Inflammation and
cancer: Advances and new agents. Nat Rev Clin Oncol. 12:584–596.
2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Semenzato G: Tumour necrosis factor: A
cytokine with multiple biological activities. Br J Cancer.
61:354–361. 1990. View Article : Google Scholar : PubMed/NCBI
|
5
|
Locksley RM, Killeen N and Lenardo MJ: The
TNF and TNF receptor superfamilies: Integrating mammalian biology.
Cell. 104:487–501. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Szlosarek P, Charles KA and Balkwill FR:
Tumour necrosis factor-alpha as a tumour promoter. Eur J Cancer.
42:745–750. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Balkwill F: F. B: Tumour necrosis factor
and cancer. Nat Rev Cancer. 9:361–371. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sun J, Han J, Zhao Y, Zhu Q and Hu J:
Curcumin induces apoptosis in tumor necrosis factor-alpha-treated
HaCaT cells. Int Immunopharmacol. 13:170–174. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sarma V, Wolf FW, Marks RM, Shows TB and
Dixit VM: Cloning of a novel tumor necrosis factor-alpha-inducible
primary response gene that is differentially expressed in
development and capillary tube-like formation in vitro. J Immunol.
148:3302–3312. 1992.PubMed/NCBI
|
10
|
Rusiniak ME, Yu M, Ross DT, Tolhurst EC
and Slack JL: Identification of B94 (TNFAIP2) as a potential
retinoic acid target gene in acute promyelocytic leukemia. Cancer
Res. 60:1824–1829. 2000.PubMed/NCBI
|
11
|
Chen LC, Chen CC, Liang Y, Tsang NM, Chang
YS and Hsueh C: A novel role for TNFAIP2: Its correlation with
invasion and metastasis in nasopharyngeal carcinoma. Mod Pathol.
24:175–184. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chen CC, Liu HP, Chao M, Liang Y, Tsang
NM, Huang HY, Wu CC and Chang YS: NF-κB-mediated transcriptional
upregulation of TNFAIP2 by the Epstein-Barr virus oncoprotein,
LMP1, promotes cell motility in nasopharyngeal carcinoma. Oncogene.
33:3648–3659. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hadisaputri YE, Miyazaki T, Suzuki S,
Yokobori T, Kobayashi T, Tanaka N, Inose T, Sohda M and Kuwano H:
TNFAIP8 overexpression: Clinical relevance to esophageal
squamous cell carcinoma. Ann Surg Oncol. 19:(Suppl 3). S589–S596.
2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yoshida A, Tsuta K, Ohno M, Yoshida M,
Narita Y, Kawai A, Asamura H and Kushima R: STAT6
immunohistochemistry is helpful in the diagnosis of solitary
fibrous tumors. Am J Surg Pathol. 38:552–559. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Luo J, Zhang C, Wang C, Li L, Li C, Li Q,
Zhang M and Wu Q: Miz-1 promotes the proliferation of esophageal
cancer cells via suppression of p21 and release of p21-arrested
cyclin D1. Oncol Rep. 35:3532–3540. 2016.PubMed/NCBI
|
16
|
Budwit-Novotny DA, McCarty KS, Cox EB,
Soper JT, Mutch DG, Creasman WT, Flowers JL and McCarty KS Jr:
Immunohistochemical analyses of estrogen receptor in endometrial
adenocarcinoma using a monoclonal antibody. Cancer Res.
46:5419–5425. 1986.PubMed/NCBI
|
17
|
Smith J, Robida MD, Acosta K, Vennapusa B,
Mistry A, Martin G, Yates A and Hnatyszyn HJ: Quantitative and
qualitative characterization of Two PD-L1 clones: SP263 and E1L3N.
Diagn Pathol. 11:442016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kreso A, van Galen P, Pedley NM,
Lima-Fernandes E, Frelin C, Davis T, Cao L, Baiazitov R, Du W,
Sydorenko N, et al: Self-renewal as a therapeutic target in human
colorectal cancer. Nat Med. 20:29–36. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔCT method. Methods.
25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Huang Q, Whitington T, Gao P, Lindberg JF,
Yang Y, Sun J, Väisänen MR, Szulkin R, Annala M, Yan J, et al: A
prostate cancer susceptibility allele at 6q22 increases RFX6
expression by modulating HOXB13 chromatin binding. Nat Genet.
46:126–135. 2014. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Xu Y, Ma H, Yu H, Liu Z, Wang LE, Tan D,
Muddasani R, Lu V, Ajani JA, Wang Y, et al: The miR-184
binding-site rs8126 T>C polymorphism in TNFAIP2 is
associated with risk of gastric cancer. PLoS One. 8:e649732013.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang J, Yu H, Zhang Y, Zhang X, Zheng G,
Gao Y, Wang C and Zhou L: A functional TNFAIP2 3-UTR rs8126
genetic polymorphism contributes to risk of esophageal squamous
cell carcinoma. PLoS One. 9:e1093182014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liu Z, Wei S, Ma H, Zhao M, Myers JN,
Weber RS, Sturgis EM and Wei Q: A functional variant at the miR-184
binding site in TNFAIP2 and risk of squamous cell carcinoma
of the head and neck. Carcinogenesis. 32:1668–1674. 2011.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kondratiev S, Duraisamy S, Unitt CL, Green
MR, Pinkus GS, Shipp MA, Kutok JL, Drapkin RI and Rodig SJ:
Aberrant expression of the dendritic cell marker TNFAIP2 by the
malignant cells of Hodgkin lymphoma and primary mediastinal large
B-cell lymphoma distinguishes these tumor types from
morphologically and phenotypically similar lymphomas. Am J Surg
Pathol. 35:1531–1539. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang Y, Zhou X, Zhu H, Liu S, Zhou C,
Zhang G, Xue L, Lu N, Quan L, Bai J, et al: Overexpression of EB1
in human esophageal squamous cell carcinoma (ESCC) may promote
cellular growth by activating beta-catenin/TCF pathway. Oncogene.
24:6637–6645. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Gao Y, Song C, Hui L, Li CY, Wang J, Tian
Y, Han X, Chen Y, Tian DL, Qiu X, et al: Overexpression of
RNF146 in non-small cell lung cancer enhances proliferation
and invasion of tumors through the Wnt/β-catenin signaling pathway.
PLoS One. 9:e853772014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Qin YR, Tang H, Xie F, Liu H, Zhu Y, Ai J,
Chen L, Li Y, Kwong DL, Fu L, et al: Characterization of
tumor-suppressive function of SOX6 in human esophageal
squamous cell carcinoma. Clin Cancer Res. 17:46–55. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Shimada Y and Sato F: Molecular factors
related to metastasis of esophageal squamous cell carcinoma.
Esophagus. 4:7–18. 2007. View Article : Google Scholar
|
29
|
Qiu HB, Zhang LY, Ren C, Zeng ZL, Wu WJ,
Luo HY, Zhou ZW and Xu RH: Targeting CDH17 suppresses tumor
progression in gastric cancer by downregulating Wnt/β-catenin
signaling. PLoS One. 8:e569592013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Stewart DJ: Wnt signaling pathway in
non-small cell lung cancer. J Natl Cancer Inst. 106:djt3562014.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Moon RT: Wnt/beta-catenin pathway. Sci
STKE. 2005:cm1. 2005.PubMed/NCBI
|