1
|
Watkins S and Sontheimer H: Hydrodynamic
cellular volume changes enable glioma cell invasion. J Neurosci.
31:17250–17259. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bush NA, Chang SM and Berger MS: Current
and future strategies for treatment of glioma. Neurosurg Rev.
40:1–14. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Demuth T, Rennert JL, Hoelzinger DB,
Reavie LB, Nakada M, Beaudry C, Nakada S, Anderson EM, Henrichs AN,
McDonough WS, et al: Glioma cells on the run - the migratory
transcriptome of 10 human glioma cell lines. BMC Genomics.
9:542008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Nakayama KI and Nakayama K: Ubiquitin
ligases: Cell-cycle control and cancer. Nat Rev Cancer. 6:369–381.
2006. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Dai B, Pieper RO, Li D, Wei P, Liu M, Woo
SY, Aldape KD, Sawaya R, Xie K and Huang S: FoxM1B regulates
NEDD4-1 expression, leading to cellular transformation and full
malignant phenotype in immortalized human astrocytes. Cancer Res.
70:2951–2961. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang X, Trotman LC, Koppie T, Alimonti A,
Chen Z, Gao Z, Wang J, Erdjument-Bromage H, Tempst P, Cordon-Cardo
C, et al: NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN.
Cell. 128:129–139. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chen Y, van de Vijver MJ, Hibshoosh H,
Parsons R and Saal LH: PTEN and NEDD4 in human breast carcinoma.
Pathol Oncol Res. 22:41–47. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sun Y: Targeting E3 ubiquitin ligases for
cancer therapy. Cancer Biol Ther. 2:623–629. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hoeller D and Dikic I: Targeting the
ubiquitin system in cancer therapy. Nature. 458:438–444. 2009.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang Y, Kitagaki J, Wang H, Hou DX and
Perantoni AO: Targeting the ubiquitin-proteasome system for cancer
therapy. Cancer Sci. 100:24–28. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Eide PW, Cekaite L, Danielsen SA,
Eilertsen IA, Kjenseth A, Fykerud TA, Ågesen TH, Bruun J, Rivedal
E, Lothe RA, et al: NEDD4 is overexpressed in colorectal cancer and
promotes colonic cell growth independently of the PI3K/PTEN/AKT
pathway. Cell Signal. 25:12–18. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kim SS, Yoo NJ, Jeong EG, Kim MS and Lee
SH: Expression of NEDD4-1, a PTEN regulator, in gastric and
colorectal carcinomas. APMIS. 116:779–784. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Drinjakovic J, Jung H, Campbell DS,
Strochlic L, Dwivedy A and Holt CE: E3 ligase Nedd4 promotes axon
branching by downregulating PTEN. Neuron. 65:341–357. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Kwak YD, Wang B, Pan W, Xu H, Jiang X and
Liao FF: Functional interaction of phosphatase and tensin homologue
(PTEN) with the E3 ligase NEDD4-1 during neuronal response to zinc.
J Biol Chem. 285:9847–9857. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Cao XR, Lill NL, Boase N, Shi PP, Croucher
DR, Shan H, Qu J, Sweezer EM, Place T, Kirby PA, et al: Nedd4
controls animal growth by regulating IGF-1 signaling. Sci Signal.
1:ra52008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Fouladkou F, Landry T, Kawabe H, Neeb A,
Lu C, Brose N, Stambolic V and Rotin D: The ubiquitin ligase
Nedd4-1 is dispensable for the regulation of PTEN stability and
localization. Proc Natl Acad Sci USA. 105:8585–8590. 2008.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Li J, Yen C, Liaw D, Podsypanina K, Bose
S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, et al:
PTEN, a putative protein tyrosine phosphatase gene mutated
in human brain, breast, and prostate cancer. Science.
275:1943–1947. 1997. View Article : Google Scholar : PubMed/NCBI
|
18
|
Carico C, Nuño M, Mukherjee D, Elramsisy
A, Dantis J, Hu J, Rudnick J, Yu JS, Black KL, Bannykh SI, et al:
Loss of PTEN is not associated with poor survival in newly
diagnosed glioblastoma patients of the temozolomide era. PLoS One.
7:e336842012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zainuddin N, Jaafar H, Isa MN and Abdullah
JM: Malignant glioma: The involvement of loss of allelic
heterozygosity and PTEN mutations in a group of Malay patients.
Southeast Asian J Trop Med Public Health. 36:748–756.
2005.PubMed/NCBI
|
20
|
Wei Q, Clarke L, Scheidenhelm DK, Qian B,
Tong A, Sabha N, Karim Z, Bock NA, Reti R, Swoboda R, et al:
High-grade glioma formation results from postnatal pten loss or
mutant epidermal growth factor receptor expression in a transgenic
mouse glioma model. Cancer Res. 66:7429–7437. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Parsa AT, Waldron JS, Panner A, Crane CA,
Parney IF, Barry JJ, Cachola KE, Murray JC, Tihan T, Jensen MC, et
al: Loss of tumor suppressor PTEN function increases B7-H1
expression and immunoresistance in glioma. Nat Med. 13:84–88. 2007.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Itoh M, Nelson CM, Myers CA and Bissell
MJ: Rap1 integrates tissue polarity, lumen formation, and
tumorigenic potential in human breast epithelial cells. Cancer Res.
67:4759–4766. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kooistra MR, Dubé N and Bos JL: Rap1: A
key regulator in cell-cell junction formation. J Cell Sci.
120:17–22. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kawabe H, Neeb A, Dimova K, Young SM Jr,
Takeda M, Katsurabayashi S, Mitkovski M, Malakhova OA, Zhang DE,
Umikawa M, et al: Regulation of Rap2A by the ubiquitin ligase
Nedd4-1 controls neurite development. Neuron. 65:358–372. 2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Bigler D, Gioeli D, Conaway MR, Weber MJ
and Theodorescu D: Rap2 regulates androgen sensitivity in human
prostate cancer cells. Prostate. 67:1590–1599. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Prabakaran I, Grau JR, Lewis R, Fraker DL
and Guvakova MA: Rap2A is upregulated in invasive cells
dissected from follicular thyroid cancer. J Thyroid Res.
2011:9798402011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang L, Zhan W, Xie S, Hu J, Shi Q, Zhou
X, Wu Y, Wang S, Fei Z and Yu R: Over-expression of Rap2a inhibits
glioma migration and invasion by down-regulating p-AKT. Cell Biol
Int. 38:326–334. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Louis DN, Ohgaki H, Wiestler OD, Cavenee
WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007
WHO classification of tumours of the central nervous system. Acta
Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhou X, Hua L, Zhang W, Zhu M, Shi Q, Li
F, Zhang L, Song C and Yu R: FRK controls migration and invasion of
human glioma cells by regulating JNK/c-Jun signaling. J Neurooncol.
110:9–19. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Liang CC, Park AY and Guan JL: In vitro
scratch assay: A convenient and inexpensive method for analysis of
cell migration in vitro. Nat Protoc. 2:329–333. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
van Golen KL, Risin S, Staroselsky A,
Berger D, Tainsky MA, Pathak S and Price JE: Predominance of the
metastatic phenotype in hybrids formed by fusion of mouse and human
melanoma clones. Clin Exp Metastasis. 14:95–106. 1996. View Article : Google Scholar : PubMed/NCBI
|
32
|
Persaud A, Alberts P, Hayes M, Guettler S,
Clarke I, Sicheri F, Dirks P, Ciruna B and Rotin D: Nedd4-1 binds
and ubiquitylates activated FGFR1 to control its endocytosis and
function. EMBO J. 30:3259–3273. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yim EK, Peng G, Dai H, Hu R, Li K, Lu Y,
Mills GB, Meric-Bernstam F, Hennessy BT, Craven RJ, et al: Rak
functions as a tumor suppressor by regulating PTEN protein
stability and function. Cancer Cell. 15:304–314. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Staub O, Dho S, Henry P, Correa J,
Ishikawa T, McGlade J and Rotin D: WW domains of Nedd4 bind to the
proline-rich PY motifs in the epithelial Na+ channel
deleted in Liddle's syndrome. EMBO J. 15:2371–2380. 1996.PubMed/NCBI
|
35
|
Murdaca J, Treins C, Monthouël-Kartmann
MN, Pontier-Bres R, Kumar S, Van Obberghen E and Giorgetti-Peraldi
S: Grb10 prevents Nedd4-mediated vascular endothelial growth factor
receptor-2 degradation. J Biol Chem. 279:26754–26761. 2004.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Shearwin-Whyatt L, Dalton HE, Foot N and
Kumar S: Regulation of functional diversity within the Nedd4 family
by accessory and adaptor proteins. BioEssays. 28:617–628. 2006.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Haglund K and Dikic I: Ubiquitylation and
cell signaling. EMBO J. 24:3353–3359. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lai Z, Ferry KV, Diamond MA, Wee KE, Kim
YB, Ma J, Yang T, Benfield PA, Copeland RA and Auger KR: Human mdm2
mediates multiple mono-ubiquitination of p53 by a mechanism
requiring enzyme isomerization. J Biol Chem. 276:31357–31367. 2001.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Dong L and Xu CW: Carbohydrates induce
mono-ubiquitination of H2B in yeast. J Biol Chem. 279:1577–1580.
2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Brenkman AB, de Keizer PL, van den Broek
NJ, Jochemsen AG and Burgering BM: Mdm2 induces mono-ubiquitination
of FOXO4. PLoS One. 3:e28192008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Torres MP, Lee MJ, Ding F, Purbeck C,
Kuhlman B, Dokholyan NV and Dohlman HG: G protein
mono-ubiquitination by the Rsp5 ubiquitin ligase. J Biol Chem.
284:8940–8950. 2009. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wu K, Yan H, Fang L, Wang X, Pfleger C,
Jiang X, Huang L and Pan ZQ: Mono-ubiquitination drives nuclear
export of the human DCN1-like protein hDCNL1. J Biol Chem.
286:34060–34070. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
McLeod SJ, Shum AJ, Lee RL, Takei F and
Gold MR: The Rap GTPases regulate integrin-mediated adhesion, cell
spreading, actin polymerization, and Pyk2 tyrosine phosphorylation
in B lymphocytes. J Biol Chem. 279:12009–12019. 2004. View Article : Google Scholar : PubMed/NCBI
|
44
|
Price LS, Hajdo-Milasinovic A, Zhao J,
Zwartkruis FJ, Collard JG and Bos JL: Rap1 regulates
E-cadherin-mediated cell-cell adhesion. J Biol Chem.
279:35127–35132. 2004. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang L, Chenwei L, Mahmood R, van Golen
K, Greenson J, Li G, D'Silva NJ, Li X, Burant CF, Logsdon CD, et
al: Identification of a putative tumor suppressor gene
Rap1GAP in pancreatic cancer. Cancer Res. 66:898–906. 2006.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Gao L, Feng Y, Bowers R, Becker-Hapak M,
Gardner J, Council L, Linette G, Zhao H and Cornelius LA:
Ras-associated protein-1 regulates extracellular signal-regulated
kinase activation and migration in melanoma cells: Two processes
important to melanoma tumorigenesis and metastasis. Cancer Res.
66:7880–7888. 2006. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ishida D, Kometani K, Yang H, Kakugawa K,
Masuda K, Iwai K, Suzuki M, Itohara S, Nakahata T, Hiai H, et al:
Myeloproliferative stem cell disorders by deregulated Rap1
activation in SPA-1-deficient mice. Cancer Cell. 4:55–65.
2003. View Article : Google Scholar : PubMed/NCBI
|
48
|
Yajnik V, Paulding C, Sordella R,
McClatchey AI, Saito M, Wahrer DC, Reynolds P, Bell DW, Lake R, van
den Heuvel S, et al: DOCK4, a GTPase activator, is disrupted
during tumorigenesis. Cell. 112:673–684. 2003. View Article : Google Scholar : PubMed/NCBI
|
49
|
Mitra RS, Goto M, Lee JS, Maldonado D,
Taylor JM, Pan Q, Carey TE, Bradford CR, Prince ME, Cordell KG, et
al: Rap1GAP promotes invasion via induction of matrix
metalloproteinase 9 secretion, which is associated with poor
survival in low N-stage squamous cell carcinoma. Cancer Res.
68:3959–3969. 2008. View Article : Google Scholar : PubMed/NCBI
|
50
|
Pizon V, Chardin P, Lerosey I, Olofsson B
and Tavitian A: Human cDNAs rap1 and rap2 homologous to the
Drosophila gene Dras3 encode proteins closely related to ras
in the ‘effector’ region. Oncogene. 3:201–204. 1988.PubMed/NCBI
|
51
|
Chantry A: WWP2 ubiquitin ligase and its
isoforms: New biological insight and promising disease targets.
Cell Cycle. 10:2437–2439. 2011. View Article : Google Scholar : PubMed/NCBI
|
52
|
Tuoc TC and Stoykova A: Roles of the
ubiquitin-proteosome system in neurogenesis. Cell Cycle.
9:3174–3180. 2010. View Article : Google Scholar : PubMed/NCBI
|