1
|
Chen JQ and Russo J: Dysregulation of
glucose transport, glycolysis, TCA cycle and glutaminolysis by
oncogenes and tumor suppressors in cancer cells. Biochim Biophys
Acta. 1826:370–384. 2012.PubMed/NCBI
|
2
|
Locasale JW: Serine, glycine and
one-carbon units: Cancer metabolism in full circle. Nat Rev Cancer.
13:572–583. 2013. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Hensley CT, Wasti AT and DeBerardinis RJ:
Glutamine and cancer: Cell biology, physiology, and clinical
opportunities. J Clin Invest. 123:3678–3684. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ferro M, Terracciano D, Buonerba C,
Lucarelli G, Bottero D, Perdonà S, Autorino R, Serino A, Cantiello
F, Damiano R, et al: The emerging role of obesity, diet and lipid
metabolism in prostate cancer. Future Oncol. 13:285–293. 2016.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Hilvo M, Denkert C, Lehtinen L, Müller B,
Brockmöller S, Seppänen-Laakso T, Budczies J, Bucher E, Yetukuri L,
Castillo S, et al: Novel theranostic opportunities offered by
characterization of altered membrane lipid metabolism in breast
cancer progression. Cancer Res. 71:3236–3245. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Currie E, Schulze A, Zechner R, Walther TC
and Farese RV Jr: Cellular fatty acid metabolism and cancer. Cell
Metab. 18:153–161. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Long JP, Li XN and Zhang F: Targeting
metabolism in breast cancer: How far we can go? World J Clin Oncol.
7:122–130. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Trezzi JP, Vlassis N and Hiller K: The
role of metabolomics in the study of cancer biomarkers and in the
development of diagnostic tools. Adv Exp Med Biol. 867:41–57. 2015.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bauer KR, Brown M, Cress RD, Parise CA and
Caggiano V: Descriptive analysis of estrogen receptor
(ER)-negative, progesterone receptor (PR)-negative, and
HER2-negative invasive breast cancer, the so-called triple-negative
phenotype: A population-based study from the California cancer
Registry. Cancer. 109:1721–1728. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Nielsen TO, Hsu FD, Jensen K, Cheang M,
Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler
L, et al: Immunohistochemical and clinical characterization of the
basal-like subtype of invasive breast carcinoma. Clin Cancer Res.
10:5367–5374. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Choi J, Jung WH and Koo JS:
Metabolism-related proteins are differentially expressed according
to the molecular subtype of invasive breast cancer defined by
surrogate immunohistochemistry. Pathobiology. 80:41–52. 2013.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Kim S, Kim DH, Jung WH and Koo JS:
Expression of glutamine metabolism-related proteins according to
molecular subtype of breast cancer. Endocr Relat Cancer.
20:339–348. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kim S, Lee Y and Koo JS: Differential
expression of lipid metabolism-related proteins in different breast
cancer subtypes. PLoS One. 10:e01194732015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang YY, Kuhajda FP, Li J, Finch TT, Cheng
P, Koh C, Li T, Sokoll LJ and Chan DW: Fatty acid synthase as a
tumor marker: Its extracellular expression in human breast cancer.
J Exp Ther Oncol. 4:101–110. 2004.PubMed/NCBI
|
16
|
Vazquez-Martin A, Ortega-Delgado FJ,
Fernandez-Real JM and Menendez JA: The tyrosine kinase receptor
HER2 (erbB-2): From oncogenesis to adipogenesis. J Cell Biochem.
105:1147–1152. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhou W, Simpson PJ, McFadden JM, Townsend
CA, Medghalchi SM, Vadlamudi A, Pinn ML, Ronnett GV and Kuhajda FP:
Fatty acid synthase inhibition triggers apoptosis during S phase in
human cancer cells. Cancer Res. 63:7330–7337. 2003.PubMed/NCBI
|
18
|
Menendez JA, Vellon L, Mehmi I, Oza BP,
Ropero S, Colomer R and Lupu R: Inhibition of fatty acid synthase
(FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in
cancer cells. Proc Natl Acad Sci USA. 101:pp. 10715–10720. 2004;
View Article : Google Scholar : PubMed/NCBI
|
19
|
Menendez JA, Vellon L, Colomer R and Lupu
R: Pharmacological and small interference RNA-mediated inhibition
of breast cancer-associated fatty acid synthase (oncogenic
antigen-519) synergistically enhances Taxol (paclitaxel)-induced
cytotoxicity. Int J Cancer. 115:19–35. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Vazquez-Martin A, Ropero S, Brunet J,
Colomer R and Menendez JA: Inhibition of fatty acid synthase (FASN)
synergistically enhances the efficacy of 5-fluorouracil in breast
carcinoma cells. Oncol Rep. 18:973–980. 2007.PubMed/NCBI
|
21
|
Soupene E and Kuypers FA: Mammalian
long-chain acyl-CoA synthetases. Exp Biol Med (Maywood).
233:507–521. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Coleman RA and Lee DP: Enzymes of
triacylglycerol synthesis and their regulation. Prog Lipid Res.
43:134–176. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Soupene E, Fyrst H and Kuypers FA:
Mammalian acyl-CoA:lysophosphatidylcholine acyltransferase enzymes.
Proc Natl Acad Sci USA. 105:pp. 88–93. 2008; View Article : Google Scholar : PubMed/NCBI
|
24
|
Park JH, Vithayathil S, Kumar S, Sung PL,
Dobrolecki LE, Putluri V, Bhat VB, Bhowmik SK, Gupta V, Arora K, et
al: Fatty acid oxidation-driven Src links mitochondrial energy
reprogramming and oncogenic properties in triple-negative breast
cancer. Cell Rep. 14:2154–2165. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pucci S, Zonetti MJ, Fisco T, Polidoro C,
Bocchinfuso G, Palleschi A, Novelli G, Spagnoli LG and Mazzarelli
P: Carnitine palmitoyl transferase-1A (CPT1A): A new tumor specific
target in human breast cancer. Oncotarget. 7:19982–19996.
2016.PubMed/NCBI
|
26
|
Monaco ME, Creighton CJ, Lee P, Zou X,
Topham MK and Stafforini DM: Expression of long-chain fatty
acyl-CoA synthetase 4 in Breast and prostate cancers is associated
with sex steroid hormone receptor negativity. Transl Oncol.
3:91–98. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wu X, Li Y, Wang J, Wen X, Marcus MT,
Daniels G, Zhang DY, Ye F, Wang LH, Du X, et al: Long chain fatty
Acyl-CoA synthetase 4 is a biomarker for and mediator of hormone
resistance in human breast cancer. PLoS One. 8:e770602013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Cerami E, Gao J, Dogrusoz U, Gross BE,
Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et
al: The cBio cancer genomics portal: An open platform for exploring
multidimensional cancer genomics data. Cancer Discov. 2:401–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gao J, Aksoy BA, Dogrusoz U, Dresdner G,
Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al:
Integrative analysis of complex cancer genomics and clinical
profiles using the cBioPortal. Sci Signal. 6:pl12013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kao KJ, Chang KM, Hsu HC and Huang AT:
Correlation of microarray-based breast cancer molecular subtypes
and clinical outcomes: Implications for treatment optimization. BMC
Cancer. 11:1432011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Itoh M, Iwamoto T, Matsuoka J, Nogami T,
Motoki T, Shien T, Taira N, Niikura N, Hayashi N, Ohtani S, et al:
Estrogen receptor (ER) mRNA expression and molecular subtype
distribution in ER-negative/progesterone receptor-positive breast
cancers. Breast Cancer Res Treat. 143:403–409. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu
W, Giri DD, Viale A, Olshen AB, Gerald WL and Massagué J: Genes
that mediate breast cancer metastasis to lung. Nature. 436:518–524.
2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Miyake T, Nakayama T, Naoi Y, Yamamoto N,
Otani Y, Kim SJ, Shimazu K, Shimomura A, Maruyama N, Tamaki Y, et
al: GSTP1 expression predicts poor pathological complete response
to neoadjuvant chemotherapy in ER-negative breast cancer. Cancer
Sci. 103:913–920. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
van t Veer LJ, Dai H, van de Vijver MJ, He
YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ,
Witteveen AT, et al: Gene expression profiling predicts clinical
outcome of breast cancer. Nature. 415:530–536. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang Y, Klijn JG, Zhang Y, Sieuwerts AM,
Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME and
Yu J: Gene-expression profiles to predict distant metastasis of
lymph-node-negative primary breast cancer. Lancet. 365:671–679.
2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Barretina J, Caponigro G, Stransky N,
Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV,
Sonkin D, et al: The Cancer Cell Line Encyclopedia enables
predictive modelling of anticancer drug sensitivity. Nature.
483:603–607. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Györffy B, Lanczky A, Eklund AC, Denkert
C, Budczies J, Li Q and Szallasi Z: An online survival analysis
tool to rapidly assess the effect of 22,277 genes on breast cancer
prognosis using microarray data of 1,809 patients. Breast Cancer
Res Treat. 123:725–731. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cho CY, Lee KT, Chen WC, Wang CY, Chang
YS, Huang HL, Hsu HP, Yen MC, Lai MZ and Lai MD: MST3 promotes
proliferation and tumorigenicity through the VAV2/Rac1 signal axis
in breast cancer. Oncotarget. 7:14586–14604. 2016.PubMed/NCBI
|
39
|
Golej DL, Askari B, Kramer F, Barnhart S,
Vivekanandan-Giri A, Pennathur S and Bornfeldt KE, Barnhart S,
Vivekanandan-Giri A, Pennathur S and Bornfeldt KE: Long-chain
acyl-CoA synthetase 4 modulates prostaglandin E2 release from human
arterial smooth muscle cells. J Lipid Res. 52:782–793. 2011.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Subik K, Lee JF, Baxter L, Strzepek T,
Costello D, Crowley P, Xing L, Hung MC, Bonfiglio T, Hicks DG, et
al: The expression patterns of ER PR, HER2, CK5/6, EGFR, Ki-67 and
AR by immunohistochemical analysis in breast cancer cell lines.
Breast Cancer (Auckl). 4:35–41. 2010.PubMed/NCBI
|
41
|
Kaemmerer E, Peuscher A, Reinartz A,
Liedtke C, Weiskirchen R, Kopitz J and Gassler N: Human intestinal
acyl-CoA synthetase 5 is sensitive to the inhibitor triacsin C.
World J Gastroenterol. 17:4883–4889. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Vessey DA, Kelley M and Warren RS:
Characterization of triacsin C inhibition of short-, medium-, and
long-chain fatty acid: CoA ligases of human liver. J Biochem Mol
Toxicol. 18:100–106. 2004. View Article : Google Scholar : PubMed/NCBI
|
43
|
Soltysiak RM, Matsuura F, Bloomer D and
Sweeley CC: D,L-alpha-Fluoropalmitic acid inhibits sphingosine base
formation and accumulates in membrane lipids of cultured mammalian
cells. Biochim Biophys Acta. 792:214–226. 1984. View Article : Google Scholar : PubMed/NCBI
|
44
|
Askari B, Kanter JE, Sherrid AM, Golej DL,
Bender AT, Liu J, Hsueh WA, Beavo JA, Coleman RA and Bornfeldt KE:
Rosiglitazone inhibits acyl-CoA synthetase activity and fatty acid
partitioning to diacylglycerol and triacylglycerol via a peroxisome
proliferator-activated receptor-gamma-independent mechanism in
human arterial smooth muscle cells and macrophages. Diabetes.
56:1143–1152. 2007. View Article : Google Scholar : PubMed/NCBI
|
45
|
Chen WC, Wang CY, Hung YH, Weng TY, Yen MC
and Lai MD: Systematic analysis of gene expression alterations and
clinical outcomes for long-chain acyl-coenzyme A synthetase family
in cancer. PLoS One. 11:e01556602016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Orlando UD, Castillo AF, Dattilo MA,
Solano AR, Maloberti PM and Podesta EJ: Acyl-CoA synthetase-4, a
new regulator of mTOR and a potential therapeutic target for
enhanced estrogen receptor function in receptor-positive and
-negative breast cancer. Oncotarget. 6:42632–42650. 2015.PubMed/NCBI
|
47
|
Mody M, Dharker N, Bloomston M, Wang PS,
Chou FS, Glickman TS, McCaffrey T, Yang Z, Pumfery A, Lee D, et al:
Rosiglitazone sensitizes MDA-MB-231 breast cancer cells to
anti-tumour effects of tumour necrosis factor-alpha, CH11 and
CYC202. Endocr Relat Cancer. 14:305–315. 2007. View Article : Google Scholar : PubMed/NCBI
|
48
|
Doll S, Proneth B, Tyurina YY, Panzilius
E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A,
et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular
lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Khurana P, Gokhale RS and Mohanty D:
Genome scale prediction of substrate specificity for acyl adenylate
superfamily of enzymes based on active site residue profiles. BMC
Bioinformatics. 11:572010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kanter JE, Tang C, Oram JF and Bornfeldt
KE: Acyl-CoA synthetase 1 is required for oleate and linoleate
mediated inhibition of cholesterol efflux through ATP-binding
cassette transporter A1 in macrophages. Biochim Biophys Acta.
1821:358–364. 2012. View Article : Google Scholar : PubMed/NCBI
|
51
|
Lopes-Marques M, Cunha I, Reis-Henriques
MA, Santos MM and Castro LF: Diversity and history of the
long-chain acyl-CoA synthetase (Acsl) gene family in vertebrates.
BMC Evol Biol. 13:2712013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Bu SY and Mashek DG: Hepatic long-chain
acyl-CoA synthetase 5 mediates fatty acid channeling between
anabolic and catabolic pathways. J Lipid Res. 51:3270–3280. 2010.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Gassler N, Roth W, Funke B, Schneider A,
Herzog F, Tischendorf JJ, Grund K, Penzel R, Bravo IG, Mariadason
J, et al: Regulation of enterocyte apoptosis by acyl-CoA synthetase
5 splicing. Gastroenterology. 133:587–598. 2007. View Article : Google Scholar : PubMed/NCBI
|
54
|
Röhrig F and Schulze A: The multifaceted
roles of fatty acid synthesis in cancer. Nat Rev Cancer.
16:732–749. 2016. View Article : Google Scholar : PubMed/NCBI
|
55
|
Igal RA, Wang P and Coleman RA: Triacsin C
blocks de novo synthesis of glycerolipids and cholesterol esters
but not recycling of fatty acid into phospholipid: Evidence for
functionally separate pools of acyl-CoA. Biochem J. 324:529–534.
1997. View Article : Google Scholar : PubMed/NCBI
|
56
|
Sastre-Serra J, Nadal-Serrano M, Pons DG,
Valle A, Oliver J and Roca P: The effects of 17β-estradiol on
mitochondrial biogenesis and function in breast cancer cell lines
are dependent on the ERα/ERβ ratio. Cell Physiol Biochem.
29:261–268. 2012. View Article : Google Scholar : PubMed/NCBI
|
57
|
Zhou Z, Zhou J and Du Y: Estrogen receptor
beta interacts and colocalizes with HADHB in mitochondria. Biochem
Biophys Res Commun. 427:305–308. 2012. View Article : Google Scholar : PubMed/NCBI
|