1
|
Harris WP, Mostaghel EA, Nelson PS and
Montgomery B: Androgen deprivation therapy: Progress in
understanding mechanisms of resistance and optimizing androgen
depletion. Nat Clin Pract Urol. 6:76–85. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tannock IF, de Wit R, Berry WR, Horti J,
Pluzanska A, Chi KN, Oudard S, Théodore C, James ND, Turesson I, et
al: TAX 327 Investigators: Docetaxel plus prednisone or
mitoxantrone plus prednisone for advanced prostate cancer. N Engl J
Med. 351:1502–1512. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Loriot Y and Fizazi K: Taxanes: Still a
major weapon in the armamentarium against prostate cancer. Eur
Urol. 63:983–985. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Heidenreich A, Bastian PJ, Bellmunt J,
Bolla M, Joniau S, van der Kwast T, Mason M, Matveev V, Wiegel T,
Zattoni F, et al: European Association of Urology: EAU guidelines
on prostate cancer. Part II: Treatment of advanced, relapsing, and
castration-resistant prostate cancer. Eur Urol. 65:467–479. 2014.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Jordan MA and Wilson L: Microtubules as a
target for anticancer drugs. Nat Rev Cancer. 4:253–265. 2004.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhu ML, Horbinski CM, Garzotto M, Qian DZ,
Beer TM and Kyprianou N: Tubulin-targeting chemotherapy impairs
androgen receptor activity in prostate cancer. Cancer Res.
70:7992–8002. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mezynski J, Pezaro C, Bianchini D, Zivi A,
Sandhu S, Thompson E, Hunt J, Sheridan E, Baikady B, Sarvadikar A,
et al: Antitumour activity of docetaxel following treatment with
the CYP17A1 inhibitor abiraterone: Clinical evidence for
cross-resistance? Ann Oncol. 23:2943–2947. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Schweizer MT, Zhou XC, Wang H, Bassi S,
Carducci MA, Eisenberger MA and Antonarakis ES: The influence of
prior abiraterone treatment on the clinical activity of docetaxel
in men with metastatic castration-resistant prostate cancer. Eur
Urol. 66:646–652. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
van Soest RJ, van Royen ME, de Morrée ES,
Moll JM, Teubel W, Wiemer EA, Mathijssen RH, de Wit R and van
Weerden WM: Cross-resistance between taxanes and new hormonal
agents abiraterone and enzalutamide may affect drug sequence
choices in metastatic castration-resistant prostate cancer. Eur J
Cancer. 49:3821–3830. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Nadal R, Zhang Z, Rahman H, Schweizer MT,
Denmeade SR, Paller CJ, Carducci MA, Eisenberger MA and Antonarakis
ES: Clinical activity of enzalutamide in docetaxel-naïve and
docetaxel-pretreated patients with metastatic castration-resistant
prostate cancer. Prostate. 74:1560–1568. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Cheng HH, Gulati R, Azad A, Nadal R,
Twardowski P, Vaishampayan UN, Agarwal N, Heath EI, Pal SK, Rehman
HT, et al: Activity of enzalutamide in men with metastatic
castration-resistant prostate cancer is affected by prior treatment
with abiraterone and/or docetaxel. Prostate Cancer Prostatic Dis.
18:122–127. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Goll DE, Thompson VF, Li H, Wei W and Cong
J: The calpain system. Physiol Rev. 83:731–801. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kimura Y, Koga H, Araki N, Mugita N,
Fujita N, Takeshima H, Nishi T, Yamashima T, Saido TC, Yamasaki T,
et al: The involvement of calpain-dependent proteolysis of the
tumor suppressor NF2 (merlin) in schwannomas and meningiomas. Nat
Med. 4:915–922. 1998. View Article : Google Scholar : PubMed/NCBI
|
14
|
Braun C, Engel M, Seifert M, Theisinger B,
Seitz G, Zang KD and Welter C: Expression of calpain I messenger
RNA in human renal cell carcinoma: Correlation with lymph node
metastasis and histological type. Int J Cancer. 84:6–9. 1999.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Lakshmikuttyamma A, Selvakumar P, Kanthan
R, Kanthan SC and Sharma RK: Overexpression of m-calpain in human
colorectal adenocarcinomas. Cancer Epidemiol Biomarkers Prev.
13:1604–1609. 2004.PubMed/NCBI
|
16
|
Mamoune A, Luo JH, Lauffenburger DA and
Wells A: Calpain-2 as a target for limiting prostate cancer
invasion. Cancer Res. 63:4632–4640. 2003.PubMed/NCBI
|
17
|
Rios-Doria J, Day KC, Kuefer R, Rashid MG,
Chinnaiyan AM, Rubin MA and Day ML: The role of calpain in the
proteolytic cleavage of E-cadherin in prostate and mammary
epithelial cells. J Biol Chem. 278:1372–1379. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu T, Mendes DE and Berkman CE: Prolonged
androgen deprivation leads to overexpression of calpain 2:
Implications for prostate cancer progression. Int J Oncol.
44:467–472. 2014.PubMed/NCBI
|
19
|
Jorfi S, Ansa-Addo EA, Kholia S, Stratton
D, Valley S, Lange S and Inal J: Sci Rep. 5:130062015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Dehm SM, Schmidt LJ, Heemers HV, Vessella
RL and Tindall DJ: Splicing of a novel androgen receptor exon
generates a constitutively active androgen receptor that mediates
prostate cancer therapy resistance. Cancer Res. 68:5469–5477. 2008.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Guo Z, Yang X, Sun F, Jiang R, Linn DE,
Chen H, Chen H, Kong X, Melamed J, Tepper CG, et al: A novel
androgen receptor splice variant is up-regulated during prostate
cancer progression and promotes androgen depletion-resistant
growth. Cancer Res. 69:2305–2313. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hörnberg E, Ylitalo EB, Crnalic S, Antti
H, Stattin P, Widmark A, Bergh A and Wikström P: Expression of
androgen receptor splice variants in prostate cancer bone
metastases is associated with castration-resistance and short
survival. PLoS One. 6:e190592011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Li Y, Chan SC, Brand LJ, Hwang TH,
Silverstein KA and Dehm SM: Androgen receptor splice variants
mediate enzalutamide resistance in castration-resistant prostate
cancer cell lines. Cancer Res. 73:483–489. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Antonarakis ES, Lu C, Wang H, Luber B,
Nakazawa M, Roeser JC, Chen Y, Mohammad TA, Chen Y, Fedor HL, et
al: AR-V7 and resistance to enzalutamide and abiraterone in
prostate cancer. N Engl J Med. 371:1028–1038. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang X, Jin TG, Yang H, DeWolf WC,
Khosravi-Far R and Olumi AF: Persistent c-FLIP(L) expression is
necessary and sufficient to maintain resistance to tumor necrosis
factor-related apoptosis-inducing ligand-mediated apoptosis in
prostate cancer. Cancer Res. 64:7086–7091. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xu S, Tao Z, Hai B, Liang H, Shi Y, Wang
T, Song W, Chen Y, OuYang J, Chen J, et al: miR-424(322) reverses
chemoresistance via T-cell immune response activation by blocking
the PD-L1 immune checkpoint. Nat Commun. 7:114062016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Xu S, Wang T, Song W, Jiang T, Zhang F,
Yin Y, Jiang SW, Wu K, Yu Z, Wang C, et al: The inhibitory effects
of AR/miR-190a/YB-1 negative feedback loop on prostate cancer and
underlying mechanism. Sci Rep. 5:135282015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cooray P, Yuan Y, Schoenwaelder SM,
Mitchell CA, Salem HH and Jackson SP: Focal adhesion kinase
(pp125FAK) cleavage and regulation by calpain. Biochem
J. 318:41–47. 1996. View Article : Google Scholar : PubMed/NCBI
|
29
|
Domingo-Domenech J, Vidal SJ,
Rodriguez-Bravo V, Castillo-Martin M, Quinn SA, Rodriguez-Barrueco
R, Bonal DM, Charytonowicz E, Gladoun N, de la Iglesia-Vicente J,
et al: Suppression of acquired docetaxel resistance in prostate
cancer through depletion of Notch- and Hedgehog-dependent
tumor-initiating cells. Cancer Cell. 22:373–388. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chan KT, Bennin DA and Huttenlocher A:
Regulation of adhesion dynamics by calpain-mediated proteolysis of
focal adhesion kinase (FAK). J Biol Chem. 285:11418–11426. 2010.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Kubbutat MH and Vousden KH: Proteolytic
cleavage of human p53 by calpain: A potential regulator of protein
stability. Mol Cell Biol. 17:460–468. 1997. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wood DE, Thomas A, Devi LA, Berman Y,
Beavis RC, Reed JC and Newcomb EW: Bax cleavage is mediated by
calpain during drug-induced apoptosis. Oncogene. 17:1069–1078.
1998. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gao G and Dou QP: N-terminal cleavage of
bax by calpain generates a potent proapoptotic 18-kDa fragment that
promotes bcl-2-independent cytochrome c release and apoptotic cell
death. J Cell Biochem. 80:53–72. 2000. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chen H, Libertini SJ, Wang Y, Kung HJ,
Ghosh P and Mudryj M: ERK regulates calpain 2-induced androgen
receptor proteolysis in CWR22 relapsed prostate tumor cell lines. J
Biol Chem. 285:2368–2374. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Pelley RP, Chinnakannu K, Murthy S,
Strickland FM, Menon M, Dou QP, Barrack ER and Reddy GP:
Calmodulin-androgen receptor (AR) interaction: Calcium-dependent,
calpain-mediated breakdown of AR in LNCaP prostate cancer cells.
Cancer Res. 66:11754–11762. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Libertini SJ, Tepper CG, Rodriguez V,
Asmuth DM, Kung HJ and Mudryj M: Evidence for calpain-mediated
androgen receptor cleavage as a mechanism for androgen
independence. Cancer Res. 67:9001–9005. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
McGrath MJ, Binge LC, Sriratana A, Wang H,
Robinson PA, Pook D, Fedele CG, Brown S, Dyson JM, Cottle DL, et
al: Regulation of the transcriptional coactivator FHL2 licenses
activation of the androgen receptor in castrate-resistant prostate
cancer. Cancer Res. 73:5066–5079. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Darshan MS, Loftus MS, Thadani-Mulero M,
Levy BP, Escuin D, Zhou XK, Gjyrezi A, Chanel-Vos C, Shen R, Tagawa
ST, et al: Taxane-induced blockade to nuclear accumulation of the
androgen receptor predicts clinical responses in metastatic
prostate cancer. Cancer Res. 71:6019–6029. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Antonarakis ES and Armstrong AJ: Evolving
standards in the treatment of docetaxel-refractory
castration-resistant prostate cancer. Prostate Cancer Prostatic
Dis. 14:192–205. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Mostaghel EA, Marck BT, Plymate SR,
Vessella RL, Balk S, Matsumoto AM, Nelson PS and Montgomery RB:
Resistance to CYP17A1 inhibition with abiraterone in
castration-resistant prostate cancer: Induction of steroidogenesis
and androgen receptor splice variants. Clin Cancer Res.
17:5913–5925. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Martin SK, Banuelos CA, Sadar MD and
Kyprianou N: N-terminal targeting of androgen receptor variant
enhances response of castration resistant prostate cancer to taxane
chemotherapy. Mol Oncol. 9:628–639. 2014. View Article : Google Scholar
|
42
|
Steinestel J, Luedeke M, Arndt A,
Schnoeller TJ, Lennerz JK, Wurm C, Maier C, Cronauer MV, Steinestel
K and Schrader AJ: Detecting predictive androgen receptor
modifications in circulating prostate cancer cells. Oncotarget. Apr
23–2015.(Epub ahead of print).
|
43
|
Yong EL, Ghadessy F, Wang Q, Mifsud A and
Ng SC: Androgen receptor transactivation domain and control of
spermatogenesis. Rev Reprod. 3:141–144. 1998. View Article : Google Scholar : PubMed/NCBI
|
44
|
Jenster G, van der Korput HA, Trapman J
and Brinkmann AO: Identification of two transcription activation
units in the N-terminal domain of the human androgen receptor. J
Biol Chem. 270:7341–7346. 1995. View Article : Google Scholar : PubMed/NCBI
|
45
|
Gelmann EP: Molecular biology of the
androgen receptor. J Clin Oncol. 20:3001–3015. 2002. View Article : Google Scholar : PubMed/NCBI
|
46
|
Chan SC, Li Y and Dehm SM: Androgen
receptor splice variants activate androgen receptor target genes
and support aberrant prostate cancer cell growth independent of
canonical androgen receptor nuclear localization signal. J Biol
Chem. 287:19736–19749. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kaku N, Matsuda K, Tsujimura A and Kawata
M: Characterization of nuclear import of the domain-specific
androgen receptor in association with the importin alpha/beta and
Ran-guanosine 5′-triphosphate systems. Endocrinology.
149:3960–3969. 2008. View Article : Google Scholar : PubMed/NCBI
|
48
|
Soderholm JF, Bird SL, Kalab P,
Sampathkumar Y, Hasegawa K, Uehara-Bingen M, Weis K and Heald R:
Importazole, a small molecule inhibitor of the transport receptor
importin-β. ACS Chem Biol. 6:700–708. 2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhang G, Liu X, Li J, Ledet E, Alvarez X,
Qi Y, Fu X, Sartor O, Dong Y and Zhang H: Androgen receptor splice
variants circumvent AR blockade by microtubule-targeting agents.
Oncotarget. 6:23358–23371. 2015. View Article : Google Scholar : PubMed/NCBI
|