1
|
Carmeliet P: Angiogenesis in life, disease
and medicine. Nature. 438:932–936. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hanahan D and Folkman J: Patterns and
emerging mechanisms of the angiogenic switch during tumorigenesis.
Cell. 86:353–364. 1996. View Article : Google Scholar : PubMed/NCBI
|
3
|
Schlieve CR, Mojica SG, Holoyda KA, Hou X,
Fowler KL and Grikscheit TC: Vascular endothelial growth factor
(VEGF) bioavailability regulates angiogenesis and intestinal stem
and progenitor cell proliferation during postnatal small intestinal
development. PLoS One. 11:e01513962016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Li Y, Turpin CP and Wang S: Role of
thrombospondin 1 in liver diseases. Hepatol Res. Aug 4–2016.(Epub
ahead of print).
|
5
|
Zhu AX, Duda DG, Sahani DV and Jain RK:
HCC and angiogenesis: Possible targets and future directions. Nat
Rev Clin Oncol. 8:292–301. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Atta MM, Atta HM, Gad MA, Rashed LA, Said
EM, Hassanien Sel-S and Kaseb AO: Clinical significance of vascular
endothelial growth factor in hepatitis C related hepatocellular
carcinoma in Egyptian patients. J Hepatocell Carcinoma. 3:19–24.
2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Welker MW and Trojan J: Anti-angiogenesis
in hepatocellular carcinoma treatment: Current evidence and future
perspectives. World J Gastroenterol. 17:3075–3081. 2011.PubMed/NCBI
|
8
|
Edeline J, Boucher E, Rolland Y, Vauléon
E, Pracht M, Perrin C, Le Roux C and Raoul JL: Comparison of tumor
response by Response Evaluation Criteria in Solid Tumors (RECIST)
and modified RECIST in patients treated with sorafenib for
hepatocellular carcinoma. Cancer. 118:147–156. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Dawson DW, Volpert OV, Gillis P, Crawford
SE, Xu H, Benedict W and Bouck NP: Pigment epithelium-derived
factor: A potent inhibitor of angiogenesis. Science. 285:245–248.
1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
He X, Cheng R, Benyajati S and Ma JX: PEDF
and its roles in physiological and pathological conditions:
Implication in diabetic and hypoxia-induced angiogenic diseases.
Clin Sci (Lond). 128:805–823. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Belkacemi L and Zhang SX: Anti-tumor
effects of pigment epithelium-derived factor (PEDF): Implication
for cancer therapy. A mini-review. J Exp Clin Cancer Res. 35:42016.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Smith ND, Schulze-Hoepfner FT, Veliceasa
D, Filleur S, Shareef S, Huang L, Huang XM and Volpert OV: Pigment
epithelium-derived factor and interleukin-6 control prostate
neuroendocrine differentiation via feed-forward mechanism. J Urol.
179:2427–2434. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Filleur S, Volz K, Nelius T, Mirochnik Y,
Huang H, Zaichuk TA, Aymerich MS, Becerra SP, Yap R, Veliceasa D,
et al: Two functional epitopes of pigment epithelial-derived factor
block angiogenesis and induce differentiation in prostate cancer.
Cancer Res. 65:5144–5152. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
He SS, Shi HS, Yin T, Li YX, Luo ST, Wu
QJ, Lu L, Wei YQ and Yang L: AAV-mediated gene transfer of human
pigment epithelium-derived factor inhibits Lewis lung carcinoma
growth in mice. Oncol Rep. 27:1142–1148. 2012.PubMed/NCBI
|
15
|
Broadhead ML, Dass CR and Choong PF:
Systemically administered PEDF against primary and secondary
tumours in a clinically relevant osteosarcoma model. Br J Cancer.
105:1503–1511. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hase R, Miyamoto M, Uehara H, Kadoya M,
Ebihara Y, Murakami Y, Takahashi R, Mega S, Li L, Shichinohe T, et
al: Pigment epithelium-derived factor gene therapy inhibits human
pancreatic cancer in mice. Clin Cancer Res. 11:8737–8744. 2005.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Mirochnik Y, Aurora A, Schulze-Hoepfner
FT, Deabes A, Shifrin V, Beckmann R, Polsky C and Volpert OV: Short
pigment epithelial-derived factor-derived peptide inhibits
angiogenesis and tumor growth. Clin Cancer Res. 15:1655–1663. 2009.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Hicklin DJ and Ellis LM: Role of the
vascular endothelial growth factor pathway in tumor growth and
angiogenesis. J Clin Oncol. 23:1011–1027. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zsebik B, Symonowicz K, Saleh Y,
Ziolkowski P, Bronowicz A and Vereb G: Photodynamic therapy
combined with a cysteine proteinase inhibitor synergistically
decrease VEGF production and promote tumour necrosis in a rat
mammary carcinoma. Cell Prolif. 40:38–49. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kazemi M, Carrer A, Moimas S, Zandonà L,
Bussani R, Casagranda B, Palmisano S, Prelazzi P, Giacca M,
Zentilin L, et al: VEGF121 and VEGF165 differentially promote
vessel maturation and tumor growth in mice and humans. Cancer Gene
Ther. 23:125–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Frezzetti D, Gallo M, Roma C, D'Alessio A,
Maiello MR, Bevilacqua S, Normanno N and De Luca A: Vascular
endothelial growth factor a regulates the secretion of different
angiogenic factors in lung cancer cells. J Cell Physiol.
231:1514–1521. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Olsson AK, Dimberg A, Kreuger J and
Claesson-Welsh L: VEGF receptor signalling - in control of vascular
function. Nat Rev Mol Cell Biol. 7:359–371. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Robinson CJ and Stringer SE: The splice
variants of vascular endothelial growth factor (VEGF) and their
receptors. J Cell Sci. 114:853–865. 2001.PubMed/NCBI
|
24
|
Domigan CK, Ziyad S and Iruela-Arispe ML:
Canonical and noncanonical vascular endothelial growth factor
pathways: New developments in biology and signal transduction.
Arterioscler Thromb Vasc Biol. 35:30–39. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Smith NR, Baker D, James NH, Ratcliffe K,
Jenkins M, Ashton SE, Sproat G, Swann R, Gray N, Ryan A, et al:
Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3
are localized primarily to the vasculature in human primary solid
cancers. Clin Cancer Res. 16:3548–3561. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Holmqvist K, Cross MJ, Rolny C, Hägerkvist
R, Rahimi N, Matsumoto T, Claesson-Welsh L and Welsh M: The adaptor
protein shb binds to tyrosine 1175 in vascular endothelial growth
factor (VEGF) receptor-2 and regulates VEGF-dependent cellular
migration. J Biol Chem. 279:22267–22275. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Johnston EK, Francis MK and Knepper JE:
Recombinant pigment epithelium-derived factor PEDF binds vascular
endothelial growth factor receptors 1 and 2. In Vitro Cell Dev Biol
Anim. 51:730–738. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wu LF, Ye YQ, Huang GY, Li HB, Li GP, Pu
ZJ, Wei BL and Feng JL: Involvement of endoplasmic reticulum stress
in adenosine-induced human hepatoma HepG2 cell apoptosis. Oncol
Rep. 26:73–79. 2011.PubMed/NCBI
|
29
|
Donato MTTL, Tolosa L and Gómez-Lechón MJ:
Culture and functional characterization of human hepatoma HepG2
cells. Methods Mol Biol. 1250:77–93. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kisielewska J, Ligeza J and Klein A: The
effect of tyrosine kinase inhibitors, tyrphostins: AG1024 and
SU1498, on autocrine growth of prostate cancer cells (DU145). Folia
Histochem Cytobiol. 46:185–191. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Laurino L, Wang XX, de la Houssaye BA,
Sosa L, Dupraz S, Cáceres A, Pfenninger KH and Quiroga S: PI3K
activation by IGF-1 is essential for the regulation of membrane
expansion at the nerve growth cone. J Cell Sci. 118:3653–3662.
2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gong Q, Qiu S, Li S, Ma Y, Chen M, Yao Y,
Che D, Feng J, Cai W, Ma J, et al: Proapoptotic PEDF functional
peptides inhibit prostate tumor growth - a mechanistic study.
Biochem Pharmacol. 92:425–437. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Coon BG, Baeyens N, Han J, Budatha M, Ross
TD, Fang JS, Yun S, Thomas JL and Schwartz MA: Intramembrane
binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the
endothelial mechanosensory complex. J Cell Biol. 208:975–986. 2015.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Liao D and Johnson RS: Hypoxia: A key
regulator of angiogenesis in cancer. Cancer Metastasis Rev.
26:281–290. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sternlicht MD and Werb Z: How matrix
metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol.
17:463–516. 2001. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li H, Daculsi R, Bareille R, Bourget C and
Amedee J: uPA and MMP-2 were involved in self-assembled network
formation in a two dimensional co-culture model of bone marrow
stromal cells and endothelial cells. J Cell Biochem. 114:650–657.
2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhao Y, Peng S, Jia C, Xu F, Xu Y and Dai
C: Armc8 regulates the invasive ability of hepatocellular carcinoma
through E-cadherin/catenin complex. Tumour Biol. 37:11219–11224.
2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yu AQ, Ding Y, Li CL, Yang Y, Yan SR and
Li DS: TALEN-induced disruption of Nanog expression results in
reduced proliferation, invasiveness and migration, increased
chemosensitivity and reversal of EMT in HepG2 cells. Oncol Rep.
35:1657–1663. 2016.PubMed/NCBI
|
39
|
Cory S, Huang DC and Adams JM: The Bcl-2
family: Roles in cell survival and oncogenesis. Oncogene.
22:8590–8607. 2003. View Article : Google Scholar : PubMed/NCBI
|
40
|
Cory S and Adams JM: The Bcl2 family:
Regulators of the cellular life-or-death switch. Nat Rev Cancer.
2:647–656. 2002. View
Article : Google Scholar : PubMed/NCBI
|
41
|
Li LY, Luo X and Wang X: Endonuclease G is
an apoptotic DNase when released from mitochondria. Nature.
412:95–99. 2001. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tian X, Shi Y, Liu N, Yan Y, Li T, Hua P
and Liu B: Upregulation of DAPK contributes to homocysteine-induced
endothelial apoptosis via the modulation of Bcl2/Bax and activation
of caspase 3. Mol Med Rep. 14:4173–4179. 2016.PubMed/NCBI
|
43
|
Cao Y, Jiang Z, Zeng Z, Liu Y, Gu Y, Ji Y,
Zhao Y and Li Y: Bcl-2 silencing attenuates hypoxia-induced
apoptosis resistance in pulmonary microvascular endothelial cells.
Apoptosis. 21:69–84. 2016. View Article : Google Scholar : PubMed/NCBI
|