1
|
Bosch FX, Ribes J, Díaz M and Cléries R:
Primary liver cancer: Worldwide incidence and trends.
Gastroenterology. 127:(Suppl 1). S5–S16. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yuen MF, Tanaka Y, Fong DY, Fung J, Wong
DK, Yuen JC, But DY, Chan AO, Wong BC, Mizokami M, et al:
Independent risk factors and predictive score for the development
of hepatocellular carcinoma in chronic hepatitis B. J Hepatol.
50:80–88. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tsai JH, Donaher JL, Murphy DA, Chau S and
Yang J: Spatiotemporal regulation of epithelial-mesenchymal
transition is essential for squamous cell carcinoma metastasis.
Cancer Cell. 22:725–736. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tsai JH and Yang J: Epithelial-mesenchymal
plasticity in carcinoma metastasis. Genes Dev. 27:2192–2206. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Bae YK, Choi JE, Kang SH and Lee SJ:
Epithelial-mesenchymal transition phenotype is associated with
clinicopathological factors that indicate aggressive biological
behavior and poor clinical outcomes in invasive breast cancer. J
Breast Cancer. 18:256–263. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Polyak K and Weinberg RA: Transitions
between epithelial and mesenchymal states: Acquisition of malignant
and stem cell traits. Nat Rev Cancer. 9:265–273. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Taneyhill LA, Coles EG and Bronner-Fraser
M: Snail2 directly represses cadherin 6B during
epithelial-to-mesenchymal transitions of the neural crest.
Development. 134:1481–1490. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Deep G, Jain AK, Ramteke A, Ting H,
Vijendra KC, Gangar SC, Agarwal C and Agarwal R: SNAI1 is critical
for the aggressiveness of prostate cancer cells with low
E-cadherin. Mol Cancer. 13:372014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Campbell K, Whissell G, Franch-Marro X,
Batlle E and Casanova J: Specific GATA factors act as conserved
inducers of an endodermal-EMT. Dev Cell. 21:1051–1061. 2011.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Song K, Li Q, Jiang ZZ, Guo CW and Li P:
Heparan sulfate D-glucosaminyl 3-O-sulfotransferase-3B1, a novel
epithelial-mesenchymal transition inducer in pancreatic cancer.
Cancer Biol Ther. 12:388–398. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ocaña OH, Córcoles R, Fabra A,
Moreno-Bueno G, Acloque H, Vega S, Barrallo-Gimeno A, Cano A and
Nieto MA: Metastatic colonization requires the repression of the
epithelial-mesenchymal transition inducer Prrx1. Cancer Cell.
22:709–724. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Takahashi Y, Sawada G, Kurashige J, Uchi
R, Matsumura T, Ueo H, Takano Y, Akiyoshi S, Eguchi H, Sudo T, et
al: Paired related homoeobox 1, a new EMT inducer, is involved in
metastasis and poor prognosis in colorectal cancer. Br J Cancer.
109:307–311. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Guo J, Fu Z, Wei J, Lu W, Feng J and Zhang
S: PRRX1 promotes epithelial-mesenchymal transition through the
Wnt/β-catenin pathway in gastric cancer. Med Oncol. 32:3932015.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Hirata H, Sugimachi K, Takahashi Y, Ueda
M, Sakimura S, Uchi R, Kurashige J, Takano Y, Nanbara S, Komatsu H,
et al: Downregulation of PRRX1 confers cancer stem cell-like
properties and predicts poor prognosis in hepatocellular carcinoma.
Ann Surg Oncol. 22:(Suppl 3). S1402–S1409. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Vogelstein B, Lane D and Levine AJ:
Surfing the p53 network. Nature. 408:307–310. 2000. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chari NS, Pinaire NL, Thorpe L, Medeiros
LJ, Routbort MJ and McDonnell TJ: The p53 tumor suppressor network
in cancer and the therapeutic modulation of cell death. Apoptosis.
14:336–347. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Soussi T: p53 alterations in human cancer:
More questions than answers. Oncogene. 26:2145–2156. 2007.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Lewis BC, Klimstra DS, Socci ND, Xu S,
Koutcher JA and Varmus HE: The absence of p53 promotes metastasis
in a novel somatic mouse model for hepatocellular carcinoma. Mol
Cell Biol. 25:1228–1237. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen YW, Klimstra DS, Mongeau ME, Tatem
JL, Boyartchuk V and Lewis BC: Loss of p53 and Ink4a/Arf cooperate
in a cell autonomous fashion to induce metastasis of hepatocellular
carcinoma cells. Cancer Res. 67:7589–7596. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hansen JE, Fischer LK, Chan G, Chang SS,
Baldwin SW, Aragon RJ, Carter JJ, Lilly M, Nishimura RN, Weisbart
RH, et al: Antibody-mediated p53 protein therapy prevents liver
metastasis in vivo. Cancer Res. 67:1769–1774. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Marte B: Cancer: Super p53. Nature.
420:2792002. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Yee SB, Choi HJ, Chung SW, Park DH, Sung
B, Chung HY and Kim ND: Growth inhibition of luteolin on HepG2
cells is induced via p53 and Fas/Fas-ligand besides the TGF-β
pathway. Int J Oncol. 47:747–754. 2015.PubMed/NCBI
|
23
|
Zhu R, Mok MT, Kang W, Lau SS, Yip WK,
Chen Y, Lai PB, Wong VW, To KF, Sung JJ, et al: Truncated
HBx-dependent silencing of GAS2 promotes hepatocarcinogenesis
through deregulation of cell cycle, senescence and p53-mediated
apoptosis. J Pathol. 237:38–49. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lou G, Liu Y, Wu S, Xue J, Yang F, Fu H,
Zheng M and Chen Z: The p53/miR-34a/SIRT1 positive feedback loop in
quercetin-induced apoptosis. Cell Physiol Biochem. 35:2192–2202.
2015. View Article : Google Scholar : PubMed/NCBI
|