Neuroendocrine factors: The missing link in non‑melanoma skin cancer (Review)
- Authors:
- Mihai Lupu
- Ana Caruntu
- Constantin Caruntu
- Laura Maria Lucia Papagheorghe
- Mihaela Adriana Ilie
- Vlad Voiculescu
- Daniel Boda
- Carolina Constantin
- Cristiana Tanase
- Maria Sifaki
- Nikolaos Drakoulis
- Charalampos Mamoulakis
- George Tzanakakis
- Monica Neagu
- Demetrios A. Spandidos
- Boris N. Izotov
- Aristides M. Tsatsakis
-
Affiliations: Department of Dermatology, MEDAS Medical Center, 030442 Bucharest, Romania, Department of Oral and Maxillofacial Surgery, ‘Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania, Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania, Dermatology Ambulatory Center, ‘Colțea’ Clinical Hospital, 030171 Bucharest, Romania, Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania, Department of Dermatology and Allergology, Elias Emergency University Hospital, 011461 Bucharest, Romania, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania, ‘Titu Maiorescu’ University, Faculty of Medicine, 031593 Bucharest, Romania, Laboratory of Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece, Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece, Department of Urology, University General Hospital of Heraklion, University of Crete Medical School, 71003 Heraklion, Greece, Laboratory of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece, Department of Analytical Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, 119991 Moscow, Russia - Published online on: July 13, 2017 https://doi.org/10.3892/or.2017.5817
- Pages: 1327-1340
-
Copyright: © Lupu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Freedberg IM, Eisen AZ, Wolff K, Austen KF, Goldsmith LA and Katz S: Fitzpatrick's Dermatology in general medicine. 6th. McGraw-Hil; New York, NY: 2003 | |
Rubin AI, Chen EH and Ratner D: Basal-cell carcinoma. N Engl J Med. 353:2262–2269. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stern RS: Prevalence of a history of skin cancer in 2007: Results of an incidence-based model. Arch Dermatol. 146:279–282. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rogers HW, Weinstock MA, Harris AR, Hinckley MR, Feldman SR, Fleischer AB and Coldiron BM: Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol. 146:283–287. 2010. View Article : Google Scholar : PubMed/NCBI | |
Diffey BL and Langtry JA: Skin cancer incidence and the ageing population. Br J Dermatol. 153:679–680. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lanoue J and Goldenberg G: Basal cell carcinoma: A comprehensive review of existing and emerging nonsurgical therapies. J Clin Aesthet Dermatol. 9:26–36. 2016.PubMed/NCBI | |
Renaud-Vilmer C and Basset-Seguin N: Basal cell carcinomas. Rev Prat. 64:37–44. 2014.(In French). PubMed/NCBI | |
Alam M and Ratner D: Cutaneous squamous-cell carcinoma. N Engl J Med. 344:975–983. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ch'ng S, Maitra A, Lea R, Brasch H and Tan ST: Parotid metastasis - an independent prognostic factor for head and neck cutaneous squamous cell carcinoma. J Plast Reconstr Aesthet Surg. 59:1288–1293. 2006. View Article : Google Scholar : PubMed/NCBI | |
Johnson TM, Rowe DE, Nelson BR and Swanson NA: Squamous cell carcinoma of the skin (excluding lip and oral mucosa). J Am Acad Dermatol. 26:467–484. 1992. View Article : Google Scholar : PubMed/NCBI | |
Rowe DE, Carroll RJ and Day CL Jr: Prognostic factors for local recurrence, metastasis, and survival rates in squamous cell carcinoma of the skin, ear, and lip. Implications for treatment modality selection. J Am Acad Dermatol. 26:976–990. 1992. View Article : Google Scholar : PubMed/NCBI | |
Rudolph R and Zelac DE: Squamous cell carcinoma of the skin. Plast Reconstr Surg. 114:82e–94e. 2004. View Article : Google Scholar : PubMed/NCBI | |
Weinberg AS, Ogle CA and Shim EK: Metastatic cutaneous squamous cell carcinoma: An update. Dermatol Surg. 33:885–899. 2007. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hakenberg OW, Compérat EM, Minhas S, Necchi A, Protzel C, Watkin N, et al: European Association of Urology: EAU guidelines on penile cancer: 2014 update. Eur Urol. 67:142–150. 2015. View Article : Google Scholar : PubMed/NCBI | |
Spiess PE, Dhillon J, Baumgarten AS, Johnstone PA and Giuliano AR: Pathophysiological basis of human papillomavirus in penile cancer: Key to prevention and delivery of more effective therapies. CA Cancer J Clin. 66:481–495. 2016. View Article : Google Scholar | |
Cakir BÖ, Adamson P and Cingi C: Epidemiology and economic burden of nonmelanoma skin cancer. Facial Plast Surg Clin North Am. 20:419–422. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kayes O, Ahmed HU, Arya M and Minhas S: Molecular and genetic pathways in penile cancer. Lancet Oncol. 8:420–429. 2007. View Article : Google Scholar : PubMed/NCBI | |
Protzel C and Spiess PE: Molecular research in penile cancer-lessons learned from the past and bright horizons of the future? Int J Mol Sci. 14:19494–19505. 2013. View Article : Google Scholar : PubMed/NCBI | |
Berton TR, Pavone A and Fischer SM: Ultraviolet-B irradiation alters the cell cycle machinery in murine epidermis in vivo. J Invest Dermatol. 117:1171–1178. 2001. View Article : Google Scholar : PubMed/NCBI | |
Oberyszyn TM: Non-melanoma skin cancer: Importance of gender, immunosuppressive status and vitamin D. Cancer Lett. 261:127–136. 2008. View Article : Google Scholar : PubMed/NCBI | |
Voiculescu V, Calenic B, Ghita M, Lupu M, Caruntu A, Moraru L, Voiculescu S, Ion A, Greabu M, Ishkitiev N, et al: From normal skin to squamous cell carcinoma: A quest for novel biomarkers. Dis Markers. 2016:45174922016. View Article : Google Scholar : PubMed/NCBI | |
Ratushny V, Gober MD, Hick R, Ridky TW and Seykora JT: From keratinocyte to cancer: The pathogenesis and modeling of cutaneous squamous cell carcinoma. J Clin Invest. 122:464–472. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stockfleth E, Ortonne JP and Alomar A: Actinic keratosis and field cancerisation. Eur J Dermatol. 21:(Supp 1). 3–11. 2011.PubMed/NCBI | |
Lugović L, Situm M, Vurnek M and Buljan M: Influence of psychoneuroimmunologic factors on patients with malignant skin diseases. Acta Med Croatica. 61:383–389. 2007.(In Croatian). PubMed/NCBI | |
Leon A, Ceauşu Z, Ceauşu M, Ardeleanu C and Mehedinţi R: Mast cells and dendritic cells in basal cell carcinoma. Rom J Morphol Embryol. 50:85–90. 2009.PubMed/NCBI | |
Calenic B, Greabu M, Caruntu C, Tanase C and Battino M: Oral keratinocyte stem/progenitor cells: Specific markers, molecular signaling pathways and potential uses. Periodontol 2000. 69:68–82. 2015. View Article : Google Scholar : PubMed/NCBI | |
Neagu M, Caruntu C, Constantin C, Boda D, Zurac S, Spandidos DA and Tsatsakis AM: Chemically induced skin carcinogenesis: Updates in experimental models (Review). Oncol Rep. 35:2516–2528. 2016.PubMed/NCBI | |
Neagu M, Constantin C, Dumitrascu GR, Lupu AR, Caruntu C, Boda D and Zurac S: Inflammation markers in cutaneous melanoma - edgy biomarkers for prognosis. Discoveries. 3:e382015. View Article : Google Scholar | |
Fagundes CP, Glaser R, Johnson SL, Andridge RR, Yang EV, Di Gregorio MP, Chen M, Lambert DR, Jewell SD, Bechtel MA, et al: Basal cell carcinoma: Stressful life events and the tumor environment. Arch Gen Psychiatry. 69:618–626. 2012. View Article : Google Scholar : PubMed/NCBI | |
Saul AN, Oberyszyn TM, Daugherty C, Kusewitt D, Jones S, Jewell S, Malarkey WB, Lehman A, Lemeshow S and Dhabhar FS: Chronic stress and susceptibility to skin cancer. J Natl Cancer Inst. 97:1760–1767. 2005. View Article : Google Scholar : PubMed/NCBI | |
Terao M and Katayama I: Local cortisol/corticosterone activation in skin physiology and pathology. J Dermatol Sci. 84:11–16. 2016. View Article : Google Scholar : PubMed/NCBI | |
Terao M, Itoi S, Murota H and Katayama I: Expression profiles of cortisol-inactivating enzyme, 11β-hydroxysteroid dehydrogenase-2, in human epidermal tumors and its role in keratinocyte proliferation. Exp Dermatol. 22:98–101. 2013. View Article : Google Scholar : PubMed/NCBI | |
Slominski A and Wortsman J: Neuroendocrinology of the skin. Endocr Rev. 21:457–487. 2000. View Article : Google Scholar : PubMed/NCBI | |
Slominski A: Neuroendocrine system of the skin. Dermatology. 211:199–208. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zmijewski MA and Slominski AT: Neuroendocrinology of the skin: An overview and selective analysis. Dermatoendocrinol. 3:3–10. 2011. View Article : Google Scholar : PubMed/NCBI | |
Căruntu C, Grigore C, Căruntu A, Diaconeasa A and Boda D: The role of stress in skin diseases. Intern Med. 8:73–84. 2011. | |
Căruntu C, Boda D, Musat S, Căruntu A and Mandache E: Stress-induced mast cell activation in glabrous and hairy skin. Mediators Inflamm. 2014:1059502014. View Article : Google Scholar : PubMed/NCBI | |
Căruntu C, Boda D, Musat S, Căruntu A, Poenaru E, Calenic B, Savulescu-Fiedler I, Draghia A, Rotaru M and Badarau AI: Stress effects on cutaneous nociceptive nerve fibers and their neurons of origin in rats. Rom Biotechnol Lett. 19:95182014. | |
Arck P and Paus R: From the brain-skin connection: The neuroendocrine-immune misalliance of stress and itch. Neuroimmunomodulation. 13:347–356. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gupta MA and Gupta AK: Psychiatric and psychological co-morbidity in patients with dermatologic disorders: Epidemiology and management. Am J Clin Dermatol. 4:833–842. 2003. View Article : Google Scholar : PubMed/NCBI | |
Căruntu C, Ghita MA, Căruntu A and Boda D: The role of stress in the multifactorial etiopathogenesis of acne. Ro Med J. 58:98–101. 2011. | |
Sinnya S and De'Ambrosis B: Stress and melanoma: Increasing the evidence towards a causal basis. Arch Dermatol Res. 305:851–856. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sanzo M, Colucci R, Arunachalam M, Berti S and Moretti S: Stress as a possible mechanism in melanoma progression. Dermatol Res Pract. 2010:4834932010.PubMed/NCBI | |
de Vries E, Trakatelli M, Kalabalikis D, Ferrandiz L, Ruiz-de-Casas A, Moreno-Ramirez D, Sotiriadis D, Ioannides D, Aquilina S, Apap C, et al: EPIDERM Group: Known and potential new risk factors for skin cancer in European populations: A multicentre case-control study. Br J Dermatol. 167:(Suppl 2). 1–13. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bulman A, Neagu M and Constantin C: Immunomics in skin cancer - improvement in diagnosis, prognosis and therapy monitoring. Curr Proteomics. 10:202–217. 2013. View Article : Google Scholar : PubMed/NCBI | |
Parker J, Klein SL, McClintock MK, Morison WL, Ye X, Conti CJ, Peterson N, Nousari CH and Tausk FA: Chronic stress accelerates ultraviolet-induced cutaneous carcinogenesis. J Am Acad Dermatol. 51:919–922. 2004. View Article : Google Scholar : PubMed/NCBI | |
Reiss Y, Proudfoot AE, Power CA, Campbell JJ and Butcher EC: CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med. 194:1541–1547. 2001. View Article : Google Scholar : PubMed/NCBI | |
Dighe AS, Richards E, Old LJ and Schreiber RD: Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN γ receptors. Immunity. 1:447–456. 1994. View Article : Google Scholar : PubMed/NCBI | |
Voest EE, Kenyon BM, O'Reilly MS, Truitt G, D'Amato RJ and Folkman J: Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst. 87:581–586. 1995. View Article : Google Scholar : PubMed/NCBI | |
Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ and Schreiber RD: IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 410:1107–1111. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sephton SE, Dhabhar FS, Classen C and Spiegel D: The diurnal cortisol slope as a predictor of immune reactivity to interpersonal stress. Brain Behav Immun. 14:1282000. | |
Mormont MC and Lévi F: Circadian-system alterations during cancer processes: A review. Int J Cancer. 70:241–247. 1997. View Article : Google Scholar : PubMed/NCBI | |
Filipski E, King VM, Li X, Granda TG, Mormont MC, Liu X, Claustrat B, Hastings MH and Lévi F: Host circadian clock as a control point in tumor progression. J Natl Cancer Inst. 94:690–697. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fu L and Lee CC: The circadian clock: Pacemaker and tumour suppressor. Nat Rev Cancer. 3:350–361. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sephton SE, Sapolsky RM, Kraemer HC and Spiegel D: Early mortality in metastatic breast cancer patients with absent or abnormal diurnal cortisol rhythms. J Natl Cancer Inst. 92:994–1000. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wong CS, Strange RC and Lear JT: Basal cell carcinoma. BMJ. 327:794–798. 2003. View Article : Google Scholar : PubMed/NCBI | |
Terao M, Murota H, Kimura A, Kato A, Ishikawa A, Igawa K, Miyoshi E and Katayama I: 11β-Hydroxysteroid dehydrogenase-1 is a novel regulator of skin homeostasis and a candidate target for promoting tissue repair. PLoS One. 6:e250392011. View Article : Google Scholar : PubMed/NCBI | |
Dhabhar FS and McEwen BS: Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: A potential role for leukocyte trafficking. Brain Behav Immun. 11:286–306. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kripke ML: Ultraviolet radiation and immunology: Something new under the sun - presidential address. Cancer Res. 54:6102–6105. 1994.PubMed/NCBI | |
Granstein RD and Matsui MS: UV radiation-induced immunosuppression and skin cancer. Cutis. 74:(Suppl). 4–9. 2004.PubMed/NCBI | |
Ben-Eliyahu S, Yirmiya R, Liebeskind JC, Taylor AN and Gale RP: Stress increases metastatic spread of a mammary tumor in rats: Evidence for mediation by the immune system. Brain Behav Immun. 5:193–205. 1991. View Article : Google Scholar : PubMed/NCBI | |
Ben-Eliyahu S: The promotion of tumor metastasis by surgery and stress: Immunological basis and implications for psychoneuroimmunology. Brain Behav Immun. 17:(Suppl 1). S27–S36. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dhabhar FS, Miller AH, McEwen BS and Spencer RL: Effects of stress on immune cell distribution. Dynamics and hormonal mechanisms. J Immunol. 154:5511–5527. 1995.PubMed/NCBI | |
Dhabhar FS, Miller AH, McEwen BS and Spencer RL: Stress-induced changes in blood leukocyte distribution. Role of adrenal steroid hormones. J Immunol. 157:1638–1644. 1996.PubMed/NCBI | |
Dhabhar FS and McEwen BS: Enhancing versus suppressive effects of stress hormones on skin immune function. Proc Natl Acad Sci USA. 96:1059–1064. 1999. View Article : Google Scholar : PubMed/NCBI | |
Dhabhar FS and Viswanathan K: Short-term stress experienced at time of immunization induces a long-lasting increase in immunologic memory. Am J Physiol Regul Integr Comp Physiol. 289:R738–R744. 2005. View Article : Google Scholar : PubMed/NCBI | |
Saint-Mezard P, Chavagnac C, Bosset S, Ionescu M, Peyron E, Kaiserlian D, Nicolas JF and Bérard F: Psychological stress exerts an adjuvant effect on skin dendritic cell functions in vivo. J Immunol. 171:4073–4080. 2003. View Article : Google Scholar : PubMed/NCBI | |
Viswanathan K, Daugherty C and Dhabhar FS: Stress as an endogenous adjuvant: Augmentation of the immunization phase of cell-mediated immunity. Int Immunol. 17:1059–1069. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wood PG, Karol MH, Kusnecov AW and Rabin BS: Enhancement of antigen-specific humoral and cell-mediated immunity by electric footshock stress in rats. Brain Behav Immun. 7:121–134. 1993. View Article : Google Scholar : PubMed/NCBI | |
Dhabhar FS, Saul AN, Daugherty C, Holmes TH, Bouley DM and Oberyszyn TM: Short-term stress enhances cellular immunity and increases early resistance to squamous cell carcinoma. Brain Behav Immun. 24:127–137. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bernabé DG, Tamae AC, Biasoli ÉR and Oliveira SHP: Stress hormones increase cell proliferation and regulates interleukin-6 secretion in human oral squamous cell carcinoma cells. Brain Behav Immun. 25:574–583. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lackovicova L, Banovska L, Bundzikova J, Janega P, Bizik J, Kiss A and Mravec B: Chemical sympathectomy suppresses fibrosarcoma development and improves survival of tumor-bearing rats. Neoplasma. 58:424–429. 2011. View Article : Google Scholar : PubMed/NCBI | |
Coelho M, Moz M, Correia G, Teixeira A, Medeiros R and Ribeiro L: Antiproliferative effects of β-blockers on human colorectal cancer cells. Oncol Rep. 33:2513–2520. 2015.PubMed/NCBI | |
Liou SF, Lin HH, Liang JC, Chen IJ and Yeh JL: Inhibition of human prostate cancer cells proliferation by a selective alpha1-adrenoceptor antagonist labedipinedilol-A involves cell cycle arrest and apoptosis. Toxicology. 256:13–24. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schallreuter KU, Lemke KR, Pittelkow MR, Wood JM, Körner C and Malik R: Catecholamines in human keratinocyte differentiation. J Invest Dermatol. 104:953–957. 1995. View Article : Google Scholar : PubMed/NCBI | |
Pullar CE, Rizzo A and Isseroff RR: beta-Adrenergic receptor antagonists accelerate skin wound healing: Evidence for a catecholamine synthesis network in the epidermis. J Biol Chem. 281:21225–21235. 2006. View Article : Google Scholar : PubMed/NCBI | |
Winkelmann RK: Cutaneous nerves in relation to epithelial tumors. J Invest Dermatol. 27:273–279. 1956. View Article : Google Scholar : PubMed/NCBI | |
Lutgendorf SK, Cole S, Costanzo E, Bradley S, Coffin J, Jabbari S, Rainwater K, Ritchie JM, Yang M and Sood AK: Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res. 9:4514–4521. 2003.PubMed/NCBI | |
Lutgendorf SK, Johnsen EL, Cooper B, Anderson B, Sorosky JI, Buller RE and Sood AK: Vascular endothelial growth factor and social support in patients with ovarian carcinoma. Cancer. 95:808–815. 2002. View Article : Google Scholar : PubMed/NCBI | |
Roy R, Zhang B and Moses MA: Making the cut: Protease-mediated regulation of angiogenesis. Exp Cell Res. 312:608–622. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sood AK, Bhatty R, Kamat AA, Landen CN, Han L, Thaker PH, Li Y, Gershenson DM, Lutgendorf S and Cole SW: Stress hormone-mediated invasion of ovarian cancer cells. Clin Cancer Res. 12:369–375. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tammela T, Enholm B, Alitalo K and Paavonen K: The biology of vascular endothelial growth factors. Cardiovasc Res. 65:550–563. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tas F, Oguz H, Argon A, Duranyildiz D, Camlica H, Yasasever V and Topuz E: The value of serum levels of IL-6, TNF-alpha, and erythropoietin in metastatic malignant melanoma: Serum IL-6 level is a valuable prognostic factor at least as serum LDH in advanced melanoma. Med Oncol. 22:241–246. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ugurel S, Rappl G, Tilgen W and Reinhold U: Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J Clin Oncol. 19:577–583. 2001. View Article : Google Scholar : PubMed/NCBI | |
Al-Wadei HAN, Plummer HK III and Schuller HM: Nicotine stimulates pancreatic cancer xenografts by systemic increase in stress neurotransmitters and suppression of the inhibitory neurotransmitter gamma-aminobutyric acid. Carcinogenesis. 30:506–511. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schuller HM, Al-Wadei HAN, Ullah MF and Plummer HK III: Regulation of pancreatic cancer by neuropsychological stress responses: A novel target for intervention. Carcinogenesis. 33:191–196. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang EV, Sood AK, Chen M, Li Y, Eubank TD, Marsh CB, Jewell S, Flavahan NA, Morrison C, Yeh PE, et al: Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res. 66:10357–10364. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Ma QY, Hu HT and Zhang M: β2-adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NFκB and AP-1. Cancer Biol Ther. 10:19–29. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zurac S, Neagu M, Constantin C, Cioplea M, Nedelcu R, Bastian A, Popp C, Nichita L, Andrei R, Tebeica T, et al: Variations in the expression of TIMP1, TIMP2 and TIMP3 in cutaneous melanoma with regression and their possible function as prognostic predictors. Oncol Lett. 11:3354–3360. 2016.PubMed/NCBI | |
Yucel T, Mutnal A, Fay K, Fligiel SE, Wang T, Johnson T, Baker SR and Varani J: Matrix metalloproteinase expression in basal cell carcinoma: Relationship between enzyme profile and collagen fragmentation pattern. Exp Mol Pathol. 79:151–160. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yang EV and Eubank TD: The impact of adrenergic signaling in skin cancer progression: Possible repurposing of β-blockers for treatment of skin cancer. Cancer Biomark. 13:155–160. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang EV, Bane CM, MacCallum RC, Kiecolt-Glaser JK, Malarkey WB and Glaser R: Stress-related modulation of matrix metalloproteinase expression. J Neuroimmunol. 133:144–150. 2002. View Article : Google Scholar : PubMed/NCBI | |
Dumas V, Kanitakis J, Charvat S, Euvrard S, Faure M and Claudy A: Expression of basement membrane antigens and matrix metalloproteinases 2 and 9 in cutaneous basal and squamous cell carcinomas. Anticancer Res. 19:(4B). 2929–2938. 1999.PubMed/NCBI | |
Lupu M, Caruntu C, Ghita MA, Voiculescu V, Voiculescu S, Rosca AE, Caruntu A, Moraru L, Popa IM, Calenic B, et al: Gene expression and proteome analysis as sources of biomarkers in basal cell carcinoma. Dis Markers. 2016:98312372016. View Article : Google Scholar : PubMed/NCBI | |
Peterson SC, Eberl M, Vagnozzi AN, Belkadi A, Veniaminova NA, Verhaegen ME, Bichakjian CK, Ward NL, Dlugosz AA and Wong SY: Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell. 16:400–412. 2015. View Article : Google Scholar : PubMed/NCBI | |
English KB, Kavka-Van Norman D and Horch K: Effects of chronic denervation in type I cutaneous mechanoreceptors (Haarscheiben). Anat Rec. 207:79–88. 1983. View Article : Google Scholar : PubMed/NCBI | |
Nurse CA, Macintyre L and Diamond J: A quantitative study of the time course of the reduction in Merkel cell number within denervated rat touch domes. Neuroscience. 11:521–533. 1984. View Article : Google Scholar : PubMed/NCBI | |
Tilling T and Moll I: Which are the cells of origin in merkel cell carcinoma? J Skin Cancer. 2012:6804102012. View Article : Google Scholar : PubMed/NCBI | |
Iyengar B: Modulation of melanocytic activity by acetylcholine. Acta Anat (Basel). 136:139–141. 1989. View Article : Google Scholar : PubMed/NCBI | |
Scholzen T, Armstrong CA, Bunnett NW, Luger TA, Olerud JE and Ansel JC: Neuropeptides in the skin: Interactions between the neuroendocrine and the skin immune systems. Exp Dermatol. 7:81–96. 1998. View Article : Google Scholar : PubMed/NCBI | |
Seiffert K and Granstein RD: Neuropeptides and neuroendocrine hormones in ultraviolet radiation-induced immunosuppression. Methods. 28:97–103. 2002. View Article : Google Scholar : PubMed/NCBI | |
Holzer P: Local effector functions of capsaicin-sensitive sensory nerve endings: Involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience. 24:739–768. 1988. View Article : Google Scholar : PubMed/NCBI | |
Richardson JD and Vasko MR: Cellular mechanisms of neurogenic inflammation. J Pharmacol Exp Ther. 302:839–845. 2002. View Article : Google Scholar : PubMed/NCBI | |
Roosterman D, Goerge T, Schneider SW, Bunnett NW and Steinhoff M: Neuronal control of skin function: The skin as a neuroimmunoendocrine organ. Physiol Rev. 86:1309–1379. 2006. View Article : Google Scholar : PubMed/NCBI | |
Căruntu C and Boda D: Evaluation through in vivo reflectance confocal microscopy of the cutaneous neurogenic inflammatory reaction induced by capsaicin in human subjects. J Biomed Opt. 17:0850032012. View Article : Google Scholar : PubMed/NCBI | |
Zaidi M, Moonga BS, Bevis PJ, Bascal ZA and Breimer LH: The calcitonin gene peptides: Biology and clinical relevance. Crit Rev Clin Lab Sci. 28:109–174. 1990. View Article : Google Scholar : PubMed/NCBI | |
Hosoi J, Murphy GF, Egan CL, Lerner EA, Grabbe S, Asahina A and Granstein RD: Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature. 363:159–163. 1993. View Article : Google Scholar : PubMed/NCBI | |
Asahina A, Hosoi J, Grabbe S and Granstein RD: Modulation of Langerhans cell function by epidermal nerves. J Allergy Clin Immunol. 96:1178–1182. 1995. View Article : Google Scholar : PubMed/NCBI | |
Gillardon F, Moll I, Michel S, Benrath J, Weihe E and Zimmermann M: Calcitonin gene-related peptide and nitric oxide are involved in ultraviolet radiation-induced immunosuppression. Eur J Pharmacol. 293:395–400. 1995. View Article : Google Scholar : PubMed/NCBI | |
Seike M, Ikeda M, Morimoto A, Matsumoto M and Kodama H: Increased synthesis of calcitonin gene-related peptide stimulates keratinocyte proliferation in murine UVB-irradiated skin. J Dermatol Sci. 28:135–143. 2002. View Article : Google Scholar : PubMed/NCBI | |
Niizeki H, Alard P and Streilein JW: Calcitonin gene-related peptide is necessary for ultraviolet B-impaired induction of contact hypersensitivity. J Immunol. 159:5183–5186. 1997.PubMed/NCBI | |
Legat FJ and Wolf P: Photodamage to the cutaneous sensory nerves: Role in photoaging and carcinogenesis of the skin? Photochem Photobiol Sci. 5:170–176. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sjöholm A: Intracellular signal transduction pathways that control pancreatic β-cell proliferation. FEBS Lett. 311:85–90. 1992. View Article : Google Scholar : PubMed/NCBI | |
Takahashi K, Nakanishi S and Imamura S: Direct effects of cutaneous neuropeptides on adenylyl cyclase activity and proliferation in a keratinocyte cell line: Stimulation of cyclic AMP formation by CGRP and VIP/PHM, and inhibition by NPY through G protein-coupled receptors. J Invest Dermatol. 101:646–651. 1993. View Article : Google Scholar : PubMed/NCBI | |
Green H: Terminal differentiation of cultured human epidermal cells. Cell. 11:405–416. 1977. View Article : Google Scholar : PubMed/NCBI | |
Green H: Cyclic AMP in relation to proliferation of the epidermal cell: A new view. Cell. 15:801–811. 1978. View Article : Google Scholar : PubMed/NCBI | |
Yoshikawa K, Takeda J, Nemoto O, Halprin KM and Adachi K: Activation of cAMP-dependent protein kinase in epidermis by the compounds which increase epidermal cAMP. J Invest Dermatol. 77:397–401. 1981. View Article : Google Scholar : PubMed/NCBI | |
Elgjo K: Epidermal chalone and cyclic AMP: An in vivo study. J Invest Dermatol. 64:14–18. 1975. View Article : Google Scholar : PubMed/NCBI | |
Delecluse C, Fukuyama K and Epstein WL: Dibutyryl cyclic AMP-induced differentiation of epidermal cells in tissue culture. J Invest Dermatol. 66:8–13. 1976. View Article : Google Scholar : PubMed/NCBI | |
Voorhees JJ, Duell EA and Kelsey WH: Dibutyryl cyclic AMP inhibition of epidermal cell division. Arch Dermatol. 105:384–386. 1972. View Article : Google Scholar : PubMed/NCBI | |
Marks F and Grimm W: Diurnal fluctuation and -adrenergic elevation of cyclic AMP in mouse epidermis in vivo. Nat New Biol. 240:178–179. 1972. View Article : Google Scholar : PubMed/NCBI | |
Wiesenfeld-Hallin Z, Hökfelt T, Lundberg JM, Forssmann WG, Reinecke M, Tschopp FA and Fischer JA: Immunoreactive calcitonin gene-related peptide and substance P coexist in sensory neurons to the spinal cord and interact in spinal behavioral responses of the rat. Neurosci Lett. 52:199–204. 1984. View Article : Google Scholar : PubMed/NCBI | |
Regoli D, Boudon A and Fauchére JL: Receptors and antagonists for substance P and related peptides. Pharmacol Rev. 46:551–599. 1994.PubMed/NCBI | |
Bang R, Sass G, Kiemer AK, Vollmar AM, Neuhuber WL and Tiegs G: Neurokinin-1 receptor antagonists CP-96,345 and L-733,060 protect mice from cytokine-mediated liver injury. J Pharmacol Exp Ther. 305:31–39. 2003. View Article : Google Scholar : PubMed/NCBI | |
Catalioto RM, Criscuoli M, Cucchi P, Giachetti A, Gianotti D, Giuliani S, Lecci A, Lippi A, Patacchini R, Quartara L, et al: MEN 11420 (Nepadutant), a novel glycosylated bicyclic peptide tachykinin NK2 receptor antagonist. Br J Pharmacol. 123:81–91. 1998. View Article : Google Scholar : PubMed/NCBI | |
Esteban F, Muñoz M, González-Moles MA and Rosso M: A role for substance P in cancer promotion and progression: A mechanism to counteract intracellular death signals following oncogene activation or DNA damage. Cancer Metastasis Rev. 25:137–145. 2006. View Article : Google Scholar : PubMed/NCBI | |
Muñoz M, Pérez A, Coveñas R, Rosso M and Castro E: Antitumoural action of L-733,060 on neuroblastoma and glioma cell lines. Arch Ital Biol. 142:105–112. 2004.PubMed/NCBI | |
Muñoz M, Rosso M, Pérez A, Coveñas R, Rosso R, Zamarriego C and Piruat JI: The NK1 receptor is involved in the antitumoural action of L-733,060 and in the mitogenic action of substance P on neuroblastoma and glioma cell lines. Neuropeptides. 39:427–432. 2005. View Article : Google Scholar : PubMed/NCBI | |
Moles MA González, Mosqueda-Taylor A, Esteban F, Gil-Montoya JA, Díaz-Franco MA, Delgado M and Muñoz M: Cell proliferation associated with actions of the substance P/NK-1 receptor complex in keratocystic odontogenic tumours. Oral Oncol. 44:1127–1133. 2008. View Article : Google Scholar : PubMed/NCBI | |
Moles MA González, Esteban F, Ruiz-Ávila I, Montoya JA Gil, Brener S, Bascones-Martínez A and Muñoz M: A role for the substance P/NK-1 receptor complex in cell proliferation and apoptosis in oral lichen planus. Oral Dis. 15:162–169. 2009. View Article : Google Scholar : PubMed/NCBI | |
Staniek V, Misery L, Péguet-Navarro J, Abello J, Doutremepuich JD, Claudy A and Schmitt D: Binding and in vitro modulation of human epidermal Langerhans cell functions by substance P. Arch Dermatol Res. 289:285–291. 1997. View Article : Google Scholar : PubMed/NCBI | |
Eschenfelder CC, Benrath J, Zimmermann M and Gillardon F: Involvement of substance P in ultraviolet irradiation-induced inflammation in rat skin. Eur J Neurosci. 7:1520–1526. 1995. View Article : Google Scholar : PubMed/NCBI | |
Benrath J, Eschenfelder C, Zimmerman M and Gillardon F: Calcitonin gene-related peptide, substance P and nitric oxide are involved in cutaneous inflammation following ultraviolet irradiation. Eur J Pharmacol. 293:87–96. 1995. View Article : Google Scholar : PubMed/NCBI | |
Koon HW, Zhao D, Na X, Moyer MP and Pothoulakis C: Metalloproteinases and transforming growth factor-alpha mediate substance P-induced mitogen-activated protein kinase activation and proliferation in human colonocytes. J Biol Chem. 279:45519–45527. 2004. View Article : Google Scholar : PubMed/NCBI | |
Brener S, González-Moles MA, Tostes D, Esteban F, Gil-Montoya JA, Ruiz-Avila I, Bravo M and Muñoz M: A role for the substance P/NK-1 receptor complex in cell proliferation in oral squamous cell carcinoma. Anticancer Res. 29:2323–2329. 2009.PubMed/NCBI | |
Weinstock JV, Blum A, Walder J and Walder R: Eosinophils from granulomas in murine schistosomiasis mansoni produce substance P. J Immunol. 141:961–966. 1988.PubMed/NCBI | |
Vincent SR and Hope BT: Neurons that say NO. Trends Neurosci. 15:108–113. 1992. View Article : Google Scholar : PubMed/NCBI | |
Lippe IT, Stabentheiner A and Holzer P: Participation of nitric oxide in the mustard oil-induced neurogenic inflammation of the rat paw skin. Eur J Pharmacol. 232:113–120. 1993. View Article : Google Scholar : PubMed/NCBI | |
Gallo O, Masini E, Morbidelli L, Franchi A, Fini-Storchi I, Vergari WA and Ziche M: Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J Natl Cancer Inst. 90:587–596. 1998. View Article : Google Scholar : PubMed/NCBI | |
Thomsen LL, Lawton FG, Knowles RG, Beesley JE, Riveros-Moreno V and Moncada S: Nitric oxide synthase activity in human gynecological cancer. Cancer Res. 54:1352–1354. 1994.PubMed/NCBI | |
Thomsen LL, Miles DW, Happerfield L, Bobrow LG, Knowles RG and Moncada S: Nitric oxide synthase activity in human breast cancer. Br J Cancer. 72:41–44. 1995. View Article : Google Scholar : PubMed/NCBI | |
Nathan C: Inducible nitric oxide synthase: what difference does it make? J Clin Invest. 100:2417–2423. 1997. View Article : Google Scholar : PubMed/NCBI | |
Song ZJ, Gong P and Wu YE: Relationship between the expression of iNOS, VEGF, tumor angiogenesis and gastric cancer. World J Gastroenterol. 8:591–595. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yagihashi N, Kasajima H, Sugai S, Matsumoto K, Ebina Y, Morita T, Murakami T and Yagihashi S: Increased in situ expression of nitric oxide synthase in human colorectal cancer. Virchows Arch. 436:109–114. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rosbe KW, Prazma J, Petrusz P, Mims W, Ball SS and Weissler MC: Immunohistochemical characterization of nitric oxide synthase activity in squamous cell carcinoma of the head and neck. Otolaryngol Head Neck Surg. 113:541–549. 1995. View Article : Google Scholar : PubMed/NCBI | |
Brennan PA, Umar T, Smith GI, Lo CH and Tant S: Expression of nitric oxide synthase-2 in cutaneous squamous cell carcinoma of the head and neck. Br J Oral Maxillofac Surg. 40:191–194. 2002. View Article : Google Scholar : PubMed/NCBI | |
Brennan PA, Umar T, Bowden J, Hobkirk A, Spedding AV, Conroy B, Zaki G and Macpherson DW: Nitric oxide synthase expression is downregulated in basal cell carcinoma of the head and neck. Br J Oral Maxillofac Surg. 38:633–636. 2000. View Article : Google Scholar : PubMed/NCBI | |
Andrade SP, Hart IR and Piper PJ: Inhibitors of nitric oxide synthase selectively reduce flow in tumor-associated neovasculature. Br J Pharmacol. 107:1092–1095. 1992. View Article : Google Scholar : PubMed/NCBI | |
Maeda H, Noguchi Y, Sato K and Akaike T: Enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor. Jpn J Cancer Res. 85:331–334. 1994. View Article : Google Scholar : PubMed/NCBI | |
Connelly ST, Macabeo-Ong M, Dekker N, Jordan RC and Schmidt BL: Increased nitric oxide levels and iNOS over-expression in oral squamous cell carcinoma. Oral Oncol. 41:261–267. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vural P, Erzengin D, Canbaz M and Selçuki D: Nitric oxide and endothelin-1,2 in actinic keratosis and basal cell carcinoma: Changes in nitric oxide/endothelin ratio. Int J Dermatol. 40:704–708. 2001. View Article : Google Scholar : PubMed/NCBI | |
Vidal MJ, Zocchi MR, Poggi A, Pellegatta F and Chierchia SL: Involvement of nitric oxide in tumor cell adhesion to cytokine-activated endothelial cells. J Cardiovasc Pharmacol. 20:(Suppl 12). S155–S159. 1992. View Article : Google Scholar : PubMed/NCBI | |
Dong Z, Staroselsky AH, Qi X, Xie K and Fidler IJ: Inverse correlation between expression of inducible nitric oxide synthase activity and production of metastasis in K-1735 murine melanoma cells. Cancer Res. 54:789–793. 1994.PubMed/NCBI | |
Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J and Guillemin R: Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science. 179:77–79. 1973. View Article : Google Scholar : PubMed/NCBI | |
Jin Z, Mori Y, Hamilton JP, Olaru A, Sato F, Yang J, Ito T, Kan T, Agarwal R and Meltzer SJ: Hypermethylation of the somatostatin promoter is a common, early event in human esophageal carcinogenesis. Cancer. 112:43–49. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jackson K, Soutto M, Peng D, Hu T, Marshal D and El-Rifai W: Epigenetic silencing of somatostatin in gastric cancer. Dig Dis Sci. 56:125–130. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mori Y, Cai K, Cheng Y, Wang S, Paun B, Hamilton JP, Jin Z, Sato F, Berki AT, Kan T, et al: A genome-wide search identifies epigenetic silencing of somatostatin, tachykinin-1, and 5 other genes in colon cancer. Gastroenterology. 131:797–808. 2006. View Article : Google Scholar : PubMed/NCBI | |
Reubi JC and Laissue JA: Multiple actions of somatostatin in neoplastic disease. Trends Pharmacol Sci. 16:110–115. 1995. View Article : Google Scholar : PubMed/NCBI | |
Scambia G, Panici P Benedetti, Baiocchi G, Andreani C, Gaggini C, Giannelli S and Mancuso S: Growth inhibitory effect of somatostatin (SS) on human breast cancer cells in culture. J Steroid Biochem. 28:1651987. View Article : Google Scholar | |
Liebow C, Reilly C, Serrano M and Schally AV: Somatostatin analogues inhibit growth of pancreatic cancer by stimulating tyrosine phosphatase. Proc Natl Acad Sci USA. 86:2003–2007. 1989. View Article : Google Scholar : PubMed/NCBI | |
Taylor JE, Bogden AE, Moreau J-P and Coy DH: In vitro and in vivo inhibition of human small cell lung carcinoma (NCI-H69) growth by a somatostatin analogue. Biochem Biophys Res Commun. 153:81–86. 1988. View Article : Google Scholar : PubMed/NCBI | |
Gill GN and Lazar CS: Increased phosphotyrosine content and inhibition of proliferation in EGF-treated A431 cells. Nature. 293:305–307. 1981. View Article : Google Scholar : PubMed/NCBI | |
Mascardo RN and Sherline P: Somatostatin inhibits rapid centrosomal separation and cell proliferation induced by epidermal growth factor. Endocrinology. 111:1394–1396. 1982. View Article : Google Scholar : PubMed/NCBI | |
Kamiya Y, Ohmura E, Arai M, Fujii T, Hayakawa F, Ito J, Kawaguchi M, Tsushima T and Sakuma N: Effect of somatostatin and its analogue on proliferation of human epidermoid carcinoma cells in vitro. Biochem Biophys Res Commun. 191:302–307. 1993. View Article : Google Scholar : PubMed/NCBI | |
Burbach J and Wiegant V: Neuropeptides: basics and perspectives. de Wied D: Elsevier; Amsterdam: pp. 45–103. 1990 | |
Thody AJ, Ridley K, Penny RJ, Chalmers R, Fisher C and Shuster S: MSH peptides are present in mammalian skin. Peptides. 4:813–816. 1983. View Article : Google Scholar : PubMed/NCBI | |
Schauer E, Trautinger F, Köck A, Schwarz A, Bhardwaj R, Simon M, Ansel JC, Schwarz T and Luger TA: Proopiomelanocortin-derived peptides are synthesized and released by human keratinocytes. J Clin Invest. 93:2258–2262. 1994. View Article : Google Scholar : PubMed/NCBI | |
Slominski A and Mihm MC: Potential mechanism of skin response to stress. Int J Dermatol. 35:849–851. 1996. View Article : Google Scholar : PubMed/NCBI | |
Slominski A, Wortsman J, Luger T, Paus R and Solomon S: Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev. 80:979–1020. 2000.PubMed/NCBI | |
Slominski AT, Botchkarev V, Choudhry M, Fazal N, Fechner K, Furkert J, Krause E, Roloff B, Sayeed M, Wei E, et al: Cutaneous expression of CRH and CRH-R. Is there a ‘skin stress response system?’. Ann N Y Acad Sci. 885:287–311. 1999. View Article : Google Scholar : PubMed/NCBI | |
Slominski A, Zbytek B, Pisarchik A, Slominski RM, Zmijewski MA and Wortsman J: CRH functions as a growth factor/cytokine in the skin. J Cell Physiol. 206:780–791. 2006. View Article : Google Scholar : PubMed/NCBI | |
Slominski A, Wortsman J, Pisarchik A, Zbytek B, Linton EA, Mazurkiewicz JE and Wei ET: Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors. FASEB J. 15:1678–1693. 2001. View Article : Google Scholar : PubMed/NCBI | |
Slominski A, Pisarchik A, Tobin DJ, Mazurkiewicz JE and Wortsman J: Differential expression of a cutaneous corticotropin-releasing hormone system. Endocrinology. 145:941–950. 2004. View Article : Google Scholar : PubMed/NCBI | |
Slominski A, Roloff B, Curry J, Dahiya M, Szczesniewski A and Wortsman J: The skin produces urocortin. J Clin Endocrinol Metab. 85:815–823. 2000. View Article : Google Scholar : PubMed/NCBI | |
Slominski A, Wortsman J, Mazurkiewicz JE, Matsuoka L, Dietrich J, Lawrence K, Gorbani A and Paus R: Detection of proopiomelanocortin-derived antigens in normal and pathologic human skin. J Lab Clin Med. 122:658–666. 1993.PubMed/NCBI | |
Slominski A, Heasley D, Mazurkiewicz JE, Ermak G, Baker J and Carlson JA: Expression of proopiomelanocortin (POMC)-derived melanocyte-stimulating hormone (MSH) and adrenocorticotropic hormone (ACTH) peptides in skin of basal cell carcinoma patients. Hum Pathol. 30:208–215. 1999. View Article : Google Scholar : PubMed/NCBI | |
Slominski A: Identification of beta-endorphin, alpha-MSH and ACTH peptides in cultured human melanocytes, melanoma and squamous cell carcinoma cells by RP-HPLC. Exp Dermatol. 7:213–216. 1998. View Article : Google Scholar : PubMed/NCBI | |
Sato H, Nagashima Y, Chrousos GP, Ichihashi M and Funasak Y: The expression of corticotropin-releasing hormone in melanoma. Pigment Cell Res. 15:98–103. 2002. View Article : Google Scholar : PubMed/NCBI | |
Slominski A and Pawelek J: Animals under the sun: Effects of ultraviolet radiation on mammalian skin. Clin Dermatol. 16:503–515. 1998. View Article : Google Scholar : PubMed/NCBI | |
Scholzen TE, Brzoska T, Kalden D-H, O'Reilly F, Armstrong CA, Luger TA and Ansel JC: Effect of ultraviolet light on the release of neuropeptides and neuroendocrine hormones in the skin: Mediators of photodermatitis and cutaneous inflammation. J Investig Dermatol Symp Proc. 4:55–60. 1999. View Article : Google Scholar : PubMed/NCBI | |
Huang CM, Elmets CA, van Kampen KR, Desilva TS, Barnes S, Kim H and Tang DC: Prospective highlights of functional skin proteomics. Mass Spectrom Rev. 24:647–660. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mitsuma T, Matsumoto Y and Tomita Y: Corticotropin releasing hormone stimulates proliferation of keratinocytes. Life Sci. 69:1991–1998. 2001. View Article : Google Scholar : PubMed/NCBI | |
Brown SL and Blalock JE: Neuroendocrine Immune InteractionsImmunophysiology: the Rrole of cells andcytokines in immunity and inflammation. Shevach JJOEM: Oxford University Press; Oxford: pp. 306–319. 1990 | |
Kim MH, Cho D, Kim HJ, Chong SJ, Lee KH, Yu DS, Park CJ, Lee JY, Cho BK and Park HJ: Investigation of the corticotropin-releasing hormone-proopiomelanocortin axis in various skin tumours. Br J Dermatol. 155:910–915. 2006. View Article : Google Scholar : PubMed/NCBI | |
Luger TA, Schauer E, Trautinger F, Krutmann J, Ansel J, Schwarz A and Schwarz T: Production of immunosuppressing melanotropins by human keratinocytes. Ann N Y Acad Sci. 680:(1 The Melanotro). 567–570. 1993. View Article : Google Scholar : PubMed/NCBI | |
Arbiser JL, Karalis K, Viswanathan A, Koike C, Anand-Apte B, Flynn E, Zetter B and Majzoub JA: Corticotropin-releasing hormone stimulates angiogenesis and epithelial tumor growth in the skin. J Invest Dermatol. 113:838–842. 1999. View Article : Google Scholar : PubMed/NCBI | |
Chakraborty AK, Funasaka Y, Slominski A, Ermak G, Hwang J, Pawelek JM and Ichihashi M: Production and release of proopiomelanocortin (POMC) derived peptides by human melanocytes and keratinocytes in culture: Regulation by ultraviolet B. Biochim Biophys Acta. 1313:130–138. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ferjan I and Lipnik-Štangelj M: Chronic pain treatment: The influence of tricyclic antidepressants on serotonin release and uptake in mast cells. Mediators Inflamm. 2013:3404732013. View Article : Google Scholar : PubMed/NCBI | |
Ton BH, Chen Q, Gaina G, Tucureanu C, Georgescu A, Strungaru C, Flonta ML, Sah D and Ristoiu V: Activation profile of dorsal root ganglia Iba-1 (+) macrophages varies with the type of lesion in rats. Acta Histochem. 115:840–850. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hart PH, Grimbaldeston MA, Swift GJ, Jaksic A, Noonan FP and Finlay-Jones JJ: Dermal mast cells determine susceptibility to ultraviolet B-induced systemic suppression of contact hypersensitivity responses in mice. J Exp Med. 187:2045–2053. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kligman LH and Murphy GF: Ultraviolet B radiation increases hairless mouse mast cells in a dose-dependent manner and alters distribution of UV-induced mast cell growth factor. Photochem Photobiol. 63:123–127. 1996. View Article : Google Scholar : PubMed/NCBI | |
Byrne SN, Limón-Flores AY and Ullrich SE: Mast cell migration from the skin to the draining lymph nodes upon ultraviolet irradiation represents a key step in the induction of immune suppression. J Immunol. 180:4648–4655. 2008. View Article : Google Scholar : PubMed/NCBI | |
Maltby S, Khazaie K and McNagny KM: Mast cells in tumor growth: Angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta. 1796:19–26. 2009.PubMed/NCBI | |
Ch'ng S, Wallis RA, Yuan L, Davis PF and Tan ST: Mast cells and cutaneous malignancies. Mod Pathol. 19:149–159. 2006. View Article : Google Scholar : PubMed/NCBI | |
Grimbaldeston MA, Skov L, Finlay-Jones JJ and Hart PH: Increased dermal mast cell prevalence and susceptibility to development of basal cell carcinoma in humans. Methods. 28:90–96. 2002. View Article : Google Scholar : PubMed/NCBI | |
Humphreys TR, Monteiro MR and Murphy GF: Mast cells and dendritic cells in basal cell carcinoma stroma. Dermatol Surg. 26:200–203; discussion 203–204. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hart PH, Grimbaldeston MA, Swift GJ, Hosszu EK and Finlay-Jones JJ: A critical role for dermal mast cells in cis-urocanic acid-induced systemic suppression of contact hypersensitivity responses in mice. Photochem Photobiol. 70:807–812. 1999. View Article : Google Scholar : PubMed/NCBI | |
Garssen J, Buckley TL and Van Loveren H: A role for neuropeptides in UVB-induced systemic immunosuppression. Photochem Photobiol. 68:205–210. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wille JJ, Kydonieus AF and Murphy GF: cis-urocanic acid induces mast cell degranulation and release of preformed TNF-alpha: A possible mechanism linking UVB and cis-urocanic acid to immunosuppression of contact hypersensitivity. Skin Pharmacol Appl Skin Physiol. 12:18–27. 1999. View Article : Google Scholar : PubMed/NCBI | |
Khalil Z, Townley SL, Grimbaldeston MA, Finlay-Jones JJ and Hart PH: cis-Urocanic acid stimulates neuropeptide release from peripheral sensory nerves. J Invest Dermatol. 117:886–891. 2001. View Article : Google Scholar : PubMed/NCBI | |
Neagu M, Constantin C and Longo C: Chemokines in the melanoma metastasis biomarkers portrait. J Immunoassay Immunochem. 36:559–566. 2015. View Article : Google Scholar : PubMed/NCBI | |
Honeyman JF: Psychoneuroimmunology and the skin. Acta Derm Venereol. 96:38–46. 2016.PubMed/NCBI | |
Ribatti D and Crivellato E: Mast cells, angiogenesis, and tumour growth. Biochim Biophys Acta. 1822:2–8. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kanda N and Watanabe S: Histamine enhances the production of nerve growth factor in human keratinocytes. J Invest Dermatol. 121:570–577. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hart PH, Grimbaldeston MA and Finlay-Jones JJ: Sunlight, immunosuppression and skin cancer: Role of histamine and mast cells. Clin Exp Pharmacol Physiol. 28:1–8. 2001. View Article : Google Scholar : PubMed/NCBI | |
Harizi H, Juzan M, Pitard V, Moreau JF and Gualde N: Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. J Immunol. 168:2255–2263. 2002. View Article : Google Scholar : PubMed/NCBI | |
Schwarz A, Ständer S, Berneburg M, Böhm M, Kulms D, van Steeg H, Grosse-Heitmeyer K, Krutmann J and Schwarz T: Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair. Nat Cell Biol. 4:26–31. 2002. View Article : Google Scholar : PubMed/NCBI | |
Varricchi G, Galdiero MR and Marone G, Granata F, Borriello F and Marone G: Controversial role of mast cells in skin cancers. Exp Dermatol. 26:11–17. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sawatsubashi M, Yamada T, Fukushima N, Mizokami H, Tokunaga O and Shin T: Association of vascular endothelial growth factor and mast cells with angiogenesis in laryngeal squamous cell carcinoma. Virchows Arch. 436:243–248. 2000. View Article : Google Scholar : PubMed/NCBI | |
Diaconu NC, Kaminska R, Naukkarinen A, Harvima RJ and Harvima IT: The increase in tryptase- and chymase-positive mast cells is associated with partial inactivation of chymase and increase in protease inhibitors in basal cell carcinoma. J Eur Acad Dermatol Venereol. 21:908–915. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hart PH, Townley SL, Grimbaldeston MA, Khalil Z and Finlay-Jones JJ: Mast cells, neuropeptides, histamine, and prostaglandins in UV-induced systemic immunosuppression. Methods. 28:79–89. 2002. View Article : Google Scholar : PubMed/NCBI | |
Townley SL, Grimbaldeston MA, Ferguson I, Rush RA, Zhang SH, Zhou XF, Conner JM, Finlay-Jones JJ and Hart PH: Nerve growth factor, neuropeptides, and mast cells in ultraviolet-B-induced systemic suppression of contact hypersensitivity responses in mice. J Invest Dermatol. 118:396–401. 2002. View Article : Google Scholar : PubMed/NCBI | |
Singh LK, Pang X, Alexacos N, Letourneau R and Theoharides TC: Acute immobilization stress triggers skin mast cell degranulation via corticotropin releasing hormone, neurotensin, and substance P: A link to neurogenic skin disorders. Brain Behav Immun. 13:225–239. 1999. View Article : Google Scholar : PubMed/NCBI |