1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zeng H, Zheng R, Guo Y, Zhang S, Zou X,
Wang N, Zhang L, Tang J, Chen J, Wei K, et al: Cancer survival in
China, 2003–2005: A population-based study. Int J Cancer.
136:1921–1930. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu
S, Li Y, Wang L, Liu Y, Yin P, et al: Cause-specific mortality for
240 causes in China during 1990–2013: A systematic subnational
analysis for the Global Burden of Disease Study 2013. Lancet.
387:251–272. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
El-Serag HB and Rudolph KL: Hepatocellular
carcinoma: Epidemiology and molecular carcinogenesis.
Gastroenterology. 132:2557–2576. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang FS, Fan JG, Zhang Z, Gao B and Wang
HY: The global burden of liver disease: The major impact of China.
Hepatology. 60:2099–2108. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xu L, Qian G, Tang L, Su J and Wang JS:
Genetic variations of hepatitis B virus and serum aflatoxin-lysine
adduct on high risk of hepatocellular carcinoma in Southern
Guangxi, China. J Hepatol. 53:671–676. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Qi LN, Bai T, Chen ZS, Wu FX, Chen YY, De
Xiang B, Peng T, Han ZG and Li LQ: The p53 mutation spectrum in
hepatocellular carcinoma from Guangxi, China: Role of chronic
hepatitis B virus infection and aflatoxin B1 exposure. Liver Int.
35:999–1009. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yin Y, Stephen CW, Luciani MG and Fåhraeus
R: p53 stability and activity is regulated by Mdm2-mediated
induction of alternative p53 translation products. Nat Cell Biol.
4:462–467. 2002. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Hainaut P and Wiman KG: 30 years and a
long way into p53 research. Lancet Oncol. 10:913–919. 2009.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Soussi T and Wiman KG: TP53: An oncogene
in disguise. Cell Death Differ. 22:1239–1249. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Petitjean A, Achatz MI, Borresen-Dale AL,
Hainaut P and Olivier M: TP53 mutations in human cancers:
Functional selection and impact on cancer prognosis and outcomes.
Oncogene. 26:2157–2165. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu J, Ma Q, Zhang M, Wang X, Zhang D, Li
W, Wang F and Wu E: Alterations of TP53 are associated with a poor
outcome for patients with hepatocellular carcinoma: Evidence from a
systematic review and meta-analysis. Eur J Cancer. 48:2328–2338.
2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Staib F, Hussain SP, Hofseth LJ, Wang XW
and Harris CC: TP53 and liver carcinogenesis. Hum Mutat.
21:201–216. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hussain SP, Schwank J, Staib F, Wang XW
and Harris CC: TP53 mutations and hepatocellular carcinoma:
Insights into the etiology and pathogenesis of liver cancer.
Oncogene. 26:2166–2176. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Villanueva A and Hoshida Y: Depicting the
role of TP53 in hepatocellular carcinoma progression. J Hepatol.
55:724–725. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gouas D, Shi H and Hainaut P: The
aflatoxin-induced TP53 mutation at codon 249 (R249S): Biomarker of
exposure, early detection and target for therapy. Cancer Lett.
286:29–37. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ji YN, Wang Q and Xue J: TP53
immunohistochemical expression is associated with the poor outcome
for hepatocellular carcinoma: Evidence from a meta-analysis. Tumour
Biol. 35:1653–1659. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Oleinik NV and Krupenko SA: Ectopic
expression of 10-formyltetrahydrofolate dehydrogenase in A549 cells
induces G1 cell cycle arrest and apoptosis. Mol Cancer Res.
1:577–588. 2003.PubMed/NCBI
|
20
|
Oleinik NV, Krupenko NI, Priest DG and
Krupenko SA: Cancer cells activate p53 in response to
10-formyltetrahydrofolate dehydrogenase expression. Biochem J.
391:503–511. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chen XQ, He JR and Wang HY: Decreased
expression of ALDH1L1 is associated with a poor prognosis in
hepatocellular carcinoma. Med Oncol. 29:1843–1849. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liao X, Han C, Qin W, Liu X, Yu L, Lu S,
Chen Z, Zhu G, Su H, Mo Z, et al: Genome-wide association study
identified PLCE1- rs2797992 and EGFR- rs6950826 were associated
with TP53 expression in the HBV-related hepatocellular
carcinoma of Chinese patients in Guangxi. Am J Transl Res.
8:1799–1812. 2016.PubMed/NCBI
|
23
|
Kondo K, Chijiiwa K, Kai M, Otani K,
Nagaike K, Ohuchida J, Hiyoshi M and Nagano M: Surgical strategy
for hepatocellular carcinoma patients with portal vein tumor
thrombus based on prognostic factors. J Gastrointest Surg.
13:1078–1083. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kumar P, Henikoff S and Ng PC: Predicting
the effects of coding non-synonymous variants on protein function
using the SIFT algorithm. Nat Protoc. 4:1073–1081. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Adzhubei IA, Schmidt S, Peshkin L,
Ramensky VE, Gerasimova A, Bork P, Kondrashov AS and Sunyaev SR: A
method and server for predicting damaging missense mutations. Nat
Methods. 7:248–249. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lee PH and Shatkay H: An integrative
scoring system for ranking SNPs by their potential deleterious
effects. Bioinformatics. 25:1048–1055. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yang Y, Vidensky S, Jin L, Jie C,
Lorenzini I, Frankl M and Rothstein JD: Molecular comparison of
GLT1+ and ALDH1L1+ astrocytes in vivo in
astroglial reporter mice. Glia. 59:200–207. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Feresten AH, Barakauskas V, Ypsilanti A,
Barr AM and Beasley CL: Increased expression of glial fibrillary
acidic protein in prefrontal cortex in psychotic illness. Schizophr
Res. 150:252–257. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Foo LC and Dougherty JD: Aldh1L1 is
expressed by postnatal neural stem cells in vivo. Glia.
61:1533–1541. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Boesmans W, Rocha NP, Reis HJ, Holt M and
Vanden Berghe P: The astrocyte marker Aldh1L1 does not reliably
label enteric glial cells. Neurosci Lett. 566:102–105. 2014.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Wu L, Lu X, Guo J, Zhang T, Wang F and Bao
Y: Association between ALDH1L1 gene polymorphism and neural
tube defects in the Chinese Han population. Neurol Sci.
37:1049–1054. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Williams SR, Yang Q, Chen F, Liu X, Keene
KL, Jacques P, Chen WM, Weinstein G, Hsu FC, Beiser A, et al:
Genomics and Randomized Trials Network; Framingham Heart Study:
Genome-wide meta-analysis of homocysteine and methionine metabolism
identifies five one carbon metabolism loci and a novel association
of ALDH1L1 with ischemic stroke. PLoS Genet.
10:e10042142014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Franke B, Vermeulen SH,
Steegers-Theunissen RP, Coenen MJ, Schijvenaars MM, Scheffer H, den
Heijer M and Blom HJ: An association study of 45 folate-related
genes in spina bifida: Involvement of cubilin (CUBN) and tRNA
aspartic acid methyltransferase 1 (TRDMT1). Birth Defects Res A
Clin Mol Teratol. 85:216–226. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Anthony TE and Heintz N: The folate
metabolic enzyme ALDH1L1 is restricted to the midline of the early
CNS, suggesting a role in human neural tube defects. J Comp Neurol.
500:368–383. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hong M, Lee Y, Kim JW, Lim JS, Chang SY,
Lee KS, Paik SG and Choe IS: Isolation and characterization of cDNA
clone for human liver 10-formyltetrahydrofolate dehydrogenase.
Biochem Mol Biol Int. 47:407–415. 1999.PubMed/NCBI
|
36
|
Krupenko SA and Oleinik NV:
10-formyltetrahydrofolate dehydrogenase, one of the major folate
enzymes, is down-regulated in tumor tissues and possesses
suppressor effects on cancer cells. Cell Growth Differ. 13:227–236.
2002.PubMed/NCBI
|
37
|
Shen JX, Liu J, Li GW, Huang YT and Wu HT:
Mining distinct aldehyde dehydrogenase 1 (ALDH1) isoenzymes in
gastric cancer. Oncotarget. 7:25340–25349. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Dmitriev AA, Kashuba VI, Haraldson K,
Senchenko VN, Pavlova TV, Kudryavtseva AV, Anedchenko EA, Krasnov
GS, Pronina IV, Loginov VI, et al: Genetic and epigenetic analysis
of non-small cell lung cancer with NotI-microarrays. Epigenetics.
7:502–513. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chen Y, Yin D, Li L, Deng YC and Tian W:
Screening aberrant methylation profile in esophageal squamous cell
carcinoma for Kazakhs in Xinjiang area of China. Mol Biol Rep.
42:457–464. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kang JH, Lee SH, Lee JS, Nam B, Seong TW,
Son J, Jang H, Hong KM, Lee C and Kim SY: Aldehyde dehydrogenase
inhibition combined with phenformin treatment reversed NSCLC
through ATP depletion. Oncotarget. 7:49397–49410. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Oleinik NV, Krupenko NI and Krupenko SA:
ALDH1L1 inhibits cell motility via dephosphorylation of cofilin by
PP1 and PP2A. Oncogene. 29:6233–6244. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hwang PH, Lian L and Zavras AI: Alcohol
intake and folate antagonism via CYP2E1 and ALDH1: Effects on oral
carcinogenesis. Med Hypotheses. 78:197–202. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Dmitriev AA, Rudenko EE, Kudryavtseva AV,
Krasnov GS, Gordiyuk VV, Melnikova NV, Stakhovsky EO, Kononenko OA,
Pavlova LS, Kondratieva TT, et al: Epigenetic alterations of
chromosome 3 revealed by NotI-microarrays in clear cell renal cell
carcinoma. Biomed Res Int. 2014:7352922014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Rodriguez FJ, Giannini C, Asmann YW,
Sharma MK, Perry A, Tibbetts KM, Jenkins RB, Scheithauer BW, Anant
S, Jenkins S, et al: Gene expression profiling of NF-1-associated
and sporadic pilocytic astrocytoma identifies aldehyde
dehydrogenase 1 family member L1 (ALDH1L1) as an underexpressed
candidate biomarker in aggressive subtypes. J Neuropathol Exp
Neurol. 67:1194–1204. 2008. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hartomo TB, Van Huyen Pham T, Yamamoto N,
Hirase S, Hasegawa D, Kosaka Y, Matsuo M, Hayakawa A, Takeshima Y,
Iijima K, et al: Involvement of aldehyde dehydrogenase 1A2 in the
regulation of cancer stem cell properties in neuroblastoma. Int J
Oncol. 46:1089–1098. 2015.PubMed/NCBI
|
46
|
Wu S, Xue W, Huang X, Yu X, Luo M, Huang
Y, Liu Y, Bi Z, Qiu X and Bai S: Distinct prognostic values of
ALDH1 isoenzymes in breast cancer. Tumour Biol. 36:2421–2426. 2015.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Li K, Guo X, Wang Z, Li X, Bu Y, Bai X,
Zheng L and Huang Y: The prognostic roles of ALDH1 isoenzymes in
gastric cancer. Onco Targets Ther. 9:3405–3414. 2016.PubMed/NCBI
|
48
|
You Q, Guo H and Xu D: Distinct prognostic
values and potential drug targets of ALDH1 isoenzymes in
non-small-cell lung cancer. Drug Des Devel Ther. 9:5087–5097. 2015.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Stevens VL, McCullough ML, Pavluck AL,
Talbot JT, Feigelson HS, Thun MJ and Calle EE: Association of
polymorphisms in one-carbon metabolism genes and postmenopausal
breast cancer incidence. Cancer Epidemiol Biomarkers Prev.
16:1140–1147. 2007. View Article : Google Scholar : PubMed/NCBI
|
50
|
Stevens VL, Rodriguez C, Sun J, Talbot JT,
Thun MJ and Calle EE: No association of single nucleotide
polymorphisms in one-carbon metabolism genes with prostate cancer
risk. Cancer Epidemiol Biomarkers Prev. 17:3612–3614. 2008.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Oleinik NV, Krupenko NI and Krupenko SA:
Epigenetic silencing of ALDH1L1, a metabolic regulator of
cellular proliferation, in cancers. Genes Cancer. 2:130–139. 2011.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Hoeferlin LA, Fekry B, Ogretmen B,
Krupenko SA and Krupenko NI: Folate stress induces apoptosis via
p53-dependent de novo ceramide synthesis and up-regulation of
ceramide synthase 6. J Biol Chem. 288:12880–12890. 2013. View Article : Google Scholar : PubMed/NCBI
|
53
|
Yeh FS, Yu MC, Mo CC, Luo S, Tong MJ and
Henderson BE: Hepatitis B virus, aflatoxins, and hepatocellular
carcinoma in southern Guangxi, China. Cancer Res. 49:2506–2509.
1989.PubMed/NCBI
|