1
|
Beauchamp MC, Yasmeen A, Knafo A and
Gotlieb WH: Targeting insulin and insulin-like growth factor
pathways in epithelial ovarian cancer. J Oncol. 2010:2570582010.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Mantia-Smaldone GM, Corr B and Chu CS:
Immunotherapy in ovarian cancer. Hum Vaccin Immunother.
8:1179–1191. 2012. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Boccardi E, Philippart A, Juhasz-Bortuzzo
JA, Beltrán AM, Novajra G, Vitale-Brovarone C, Spiecker E and
Boccaccini AR: Uniform surface modification of 3D bioglass
(®)-based scaffolds with mesoporous silica particles
(MCM-41) for enhancing drug delivery capability. Front Bioeng
Biotechnol. 3:1772015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Liu J, Luo Z, Zhang J, Luo T, Zhou J, Zhao
X and Cai K: Hollow mesoporous silica nanoparticles facilitated
drug delivery via cascade pH stimuli in tumor microenvironment for
tumor therapy. Biomaterials. 83:51–65. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Li N, Huang C, Luan Y, Song A, Song Y and
Garg S: Active targeting co-delivery system based on pH-sensitive
methoxy-poly (ethylene glycol)2K-poly (ε-caprolactone)4K-poly
(glutamic acid)1K for enhanced cancer therapy. J Colloid Interface
Sci. 472:90–98. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Huang Y, Jiang Y, Wang H, Wang J, Shin MC,
Byun Y, He H, Liang Y and Yang VC: Curb challenges of the ‘Trojan
Horse’ approach: Smart strategies in achieving effective yet safe
cell-penetrating peptide-based drug delivery. Adv Drug Deliv Rev.
65:1299–1315. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Han L, Tang C and Yin C: Dual-targeting
and pH/redox-responsive multi-layered nanocomplexes for smart
co-delivery of doxorubicin and siRNA. Biomaterials. 60:42–52. 2015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Bowker SL, Majumdar SR, Veugelers P and
Johnson JA: Increased cancer-related mortality for patients with
type 2 diabetes who use sulfonylureas or insulin: Response to
Farooki and Schneider. Diabetes Care. 29:1990–1991. 2006.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Brokaw J, Katsaros D, Wiley A, Lu L, Su D,
Sochirca O, de la Longrais IA, Mayne S, Risch H and Yu H: IGF-I in
epithelial ovarian cancer and its role in disease progression.
Growth Factors. 25:346–354. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Attias-Geva Z, Bentov I, Fishman A, Werner
H and Bruchim I: Insulin-like growth factor-I receptor inhibition
by specific tyrosine kinase inhibitor NVP-AEW541 in endometrioid
and serous papillary endometrial cancer cell lines. Gynecol Oncol.
121:383–389. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhan Q, Wang C and Ngai S: Ovarian cancer
stem cells: A new target for cancer therapy. BioMed Res Int.
2013:9168192013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Burgos-Ojeda D, Rueda BR and Buckanovich
RJ: Ovarian cancer stem cell markers: Prognostic and therapeutic
implications. Cancer Lett. 322:1–7. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kryczek I, Zou L, Rodriguez P, Zhu G, Wei
S, Mottram P, Brumlik M, Cheng P, Curiel T, Myers L, et al: B7-H4
expression identifies a novel suppressive macrophage population in
human ovarian carcinoma. J Exp Med. 203:871–881. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Curiel TJ, Coukos G, Zou L, Alvarez X,
Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L,
Burow M, et al: Specific recruitment of regulatory T cells in
ovarian carcinoma fosters immune privilege and predicts reduced
survival. Nat Med. 10:942–949. 2004. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Trinchero A, Bonora S, Tinti A and Fini G:
Spectroscopic behavior of copper complexes of nonsteroidal
anti-inflammatory drugs. Biopolymers. 74:120–124. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gallagher EJ and LeRoith D: The
proliferating role of insulin and insulin-like growth factors in
cancer. Trends Endocrinol Metab. 21:610–618. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jun YW, Lee JH and Cheon J: Chemical
design of nanoparticle probes for high-performance magnetic
resonance imaging. Angew Chem Int Ed Engl. 47:5122–5135. 2008.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Peer D, Karp JM, Hong S, Farokhzad OC,
Margalit R and Langer R: Nanocarriers as an emerging platform for
cancer therapy. Nat Nanotechnol. 2:751–760. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Gullotti E and Yeo Y: Extracellularly
activated nanocarriers: A new paradigm of tumor targeted drug
delivery. Mol Pharm. 6:1041–1051. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink
JI and Nel AE: Use of size and a copolymer design feature to
improve the biodistribution and the enhanced permeability and
retention effect of doxorubicin-loaded mesoporous silica
nanoparticles in a murine xenograft tumor model. ACS Nano.
5:4131–4144. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu N, Han J, Zhang X, Yang Y, Liu Y, Wang
Y and Wu G: pH-responsive zwitterionic polypeptide as a platform
for anti-tumor drug delivery. Colloids Surf B Biointerfaces.
145:401–409. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Li W, Zhang H, Assaraf YG, Zhao K, Xu X,
Xie J, Yang DH and Chen ZS: Overcoming ABC transporter-mediated
multidrug resistance: Molecular mechanisms and novel therapeutic
drug strategies. Drug Resist Updat. 27:14–29. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wu Q, Yang Z, Nie Y, Shi Y and Fan D:
Multi-drug resistance in cancer chemotherapeutics: Mechanisms and
lab approaches. Cancer Lett. 347:159–166. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Whitley BR, Beaulieu LM, Carter JC and
Church FC: Phosphatidylinositol 3-kinase/Akt regulates the balance
between plasminogen activator inhibitor-1 and urokinase to promote
migration of SKOV-3 ovarian cancer cells. Gynecol Oncol.
104:470–479. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yang B, Zhao Y, Lou C and Zhao H:
Eupalinolide O, a novel sesquiterpene lactone from Eupatorium
lindleyanum DC., induces cell cycle arrest and apoptosis in
human MDA-MB-468 breast cancer cells. Oncol Rep. 36:2807–2813.
2016.PubMed/NCBI
|
26
|
Wang LH, Jiang XR, Chen GL, Guo W, Zhang
JY, Cui LJ, Li HH, Li M, Liu X, Yang JY, et al: Anti-tumor activity
of SL4 against breast cancer cells: Induction of G2/M arrest
through modulation of the MAPK-dependent p21 signaling pathway. Sci
Rep. 6:364862016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Subramaniam S and Unsicker K:
Extracellular signal-regulated kinase as an inducer of
non-apoptotic neuronal death. Neuroscience. 138:1055–1065. 2006.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Andersen JL and Kornbluth S: The tangled
circuitry of metabolism and apoptosis. Mol Cell. 49:399–410. 2013.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Singh RK, Gaikwad SM, Jinager A, Chaudhury
S, Maheshwari A and Ray P: IGF-1R inhibition potentiates cytotoxic
effects of chemotherapeutic agents in early stages of
chemoresistant ovarian cancer cells. Cancer Lett. 354:254–262.
2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jia J, Zhang Y, Cai J, Wang J, Ding H,
Zhou J, Fang F and Wang Z: A novel function of protein kinase B as
an inducer of the mismatch repair gene hPMS2 degradation. Cell
Signal. 25:1498–1504. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Rao W, Li H, Song F, Zhang R, Yin Q, Wang
Y, Xi Y and Ge H: OVA66 increases cell growth, invasion and
survival via regulation of IGF-1R-MAPK signaling in human cancer
cells. Carcinogenesis. 35:1573–1581. 2014. View Article : Google Scholar : PubMed/NCBI
|