1
|
Aggarwal RR, Beer TM, Weinberg VK, Higano
C, Taplin ME, Ryan CJ, Lin AM, Alumkal J, Graff JN, Nordquist LT,
et al: Intermittent chemotherapy as a platform for testing novel
agents in patients with metastatic castration-resistant prostate
cancer: A Department of Defense Prostate cancer clinical trials
consortium randomized phase II trial of intermittent docetaxel with
prednisone with or without maintenance GM-CSF. Clin Genitourin
Cancer. 13:e191–e198. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Figg WD, Chau CH, Madan RA, Gulley JL, Gao
R, Sissung TM, Spencer S, Beatson M, Aragon-Ching J, Steinberg SM,
et al: Phase II study of satraplatin and prednisone in patients
with metastatic castration-resistant prostate cancer: A
pharmacogenetic assessment of outcome and toxicity. Clin Genitourin
Cancer. 11:229–237. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Scheltema MJ, van den Bos W, de Bruin DM,
Wijkstra H, Laguna MP, de Reijke TM and de la Rosette JJ: Focal vs
extended ablation in localized prostate cancer with irreversible
electroporation; a multi-center randomized controlled trial. BMC
Cancer. 16:2992016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Guo J, Huang X, Wang H and Yang H:
Celastrol induces autophagy by targeting AR/miR-101 in prostate
cancer cells. PLoS One. 10:e01407452015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Guo J, Mei Y, Li K, Huang X and Yang H:
Downregulation of miR-17-92a cluster promotes autophagy induction
in response to celastrol treatment in prostate cancer cells.
Biochem Biophys Res Commun. 478:804–810. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Liao H, Xiao Y, Hu Y, Xiao Y, Yin Z and
Liu L: microRNA-32 induces radioresistance by targeting DAB2IP and
regulating autophagy in prostate cancer cells. Oncol Lett.
10:2055–2062. 2015.PubMed/NCBI
|
7
|
Rah B, ur Rasool R, Nayak D, Yousuf SK,
Mukherjee D, Kumar LD and Goswami A: PAWR-mediated suppression of
BCL2 promotes switching of 3-azido withaferin A (3-AWA)-induced
autophagy to apoptosis in prostate cancer cells. Autophagy.
11:314–331. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mathur A, Elmageed ZY Abd, Liu X,
Kostochka ML, Zhang H, Abdel-Mageed AB and Mondal D: Subverting
ER-stress towards apoptosis by nelfinavir and curcumin coexposure
augments docetaxel efficacy in castration resistant prostate cancer
cells. PLoS One. 9:e1031092014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yang J, Wei J, Wu Y, Wang Z, Guo Y, Lee P
and Li X: Metformin induces ER stress-dependent apoptosis through
miR-708-5p/NNAT pathway in prostate cancer. Oncogenesis.
4:e1582015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Fujiwara N, Usui T, Ohama T and Sato K:
Regulation of Beclin 1 protein phosphorylation and autophagy by
protein phosphatase 2A (PP2A) and death-associated protein kinase 3
(DAPK3). J Biol Chem. 291:10858–10866. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Das TP, Suman S, John AM Papu, Pal D,
Edwards A, Alatassi H, Ankem MK and Damodaran C: Activation of AKT
negatively regulates the pro-apoptotic function of death-associated
protein kinase 3 (DAPK3) in prostate cancer. Cancer Lett.
377:134–139. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Utermark T, Schmit F, Lee SH, Gao X,
Schaffhausen BS and Roberts TM: The phosphatidylinositol 3-kinase
(PI3K) isoform dependence of tumor formation is determined by the
genetic mode of PI3K pathway activation rather than by tissue type.
J Virol. 88:10673–10679. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Quan Y, Wang N, Chen Q, Xu J, Cheng W, Di
M, Xia W and Gao WQ: SIRT3 inhibits prostate cancer by
destabilizing oncoprotein c-MYC through regulation of the PI3K/Akt
pathway. Oncotarget. 6:26494–26507. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nambiar J, Bose C, Venugopal M, Banerji A,
Patel TB, Kumar GB and Nair BG: Anacardic acid inhibits gelatinases
through the regulation of Spry2, MMP-14, EMMPRIN and RECK. Exp Cell
Res. 349:139–151. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Philip JY, Da Cruz Francisco J, Dey ES,
Buchweishaija J, Mkayula LL and Ye L: Isolation of anacardic acid
from natural cashew nut shell liquid (CNSL) using supercritical
carbon dioxide. J Agric Food Chem. 56:9350–9354. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Peng C, Zhu J, Sun HC, Huang XP, Zhao WA,
Zheng M, Liu LJ and Tian J: Inhibition of histone H3K9 acetylation
by anacardic acid can correct the over-expression of Gata4 in the
hearts of fetal mice exposed to alcohol during pregnancy. PLoS One.
9:e1041352014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Alam-Escamilla D, Estrada-Muñiz E,
Solís-Villegas E, Elizondo G and Vega L: Genotoxic and cytostatic
effects of 6-pentadecyl salicylic anacardic acid in transformed
cell lines and peripheral blood mononuclear cells. Mutat Res Genet
Toxicol Environ Mutagen. 777:43–53. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Seong YA, Shin PG, Yoon JS, Yadunandam AK
and Kim GD: Induction of the endoplasmic reticulum stress and
autophagy in human lung carcinoma A549 cells by anacardic acid.
Cell Biochem Biophys. 68:369–377. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Gladwish A, Loblaw A, Cheung P, Morton G,
Chung H, Deabreu A, Pang G and Mamedov A: Accelerated
hypofractioned postoperative radiotherapy for prostate cancer: A
prospective phase I/II study. Clin Oncol (R Coll Radiol).
27:145–152. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gong P, Zhang T, He D and Hsieh JT:
MicroRNA-145 modulates tumor sensitivity to radiation in prostate
cancer. Radiat Res. 184:630–638. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yao K, Jiang X, He L, Tang Y, Yin G, Zeng
Q, Jiang Z and Tan J: Anacardic acid sensitizes prostate cancer
cells to radiation therapy by regulating H2AX expression. Int J
Clin Exp Pathol. 8:15926–15932. 2015.PubMed/NCBI
|
22
|
Morell C, Bort A, Vara-Ciruelos D,
Ramos-Torres Á, Altamirano-Dimas M, Díaz-Laviada I and
Rodríguez-Henche N: Up-regulated expression of LAMP2 and autophagy
activity during neuroendocrine differentiation of prostate cancer
LNCaP cells. PLoS One. 11:e01629772016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ramos-Torres Á, Bort A, Morell C,
Rodríguez-Henche N and Díaz-Laviada I: The peppers natural
ingredient capsaicin induces autophagy blockage in prostate cancer
cells. Oncotarget. 7:1569–1583. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tai S, Xu L, Xu M, Zhang L, Zhang Y, Zhang
K, Zhang L and Liang C: Combination of Arsenic trioxide and
Everolimus (Rad001) synergistically induces both autophagy and
apoptosis in prostate cancer cells. Oncotarget. 8:11206–11218.
2017.PubMed/NCBI
|
25
|
Wang L, Fu P, Zhao Y, Wang G, Yu R, Wang
X, Tang Z, Imperato-McGinley J and Zhu YS: Dissociation of
NSC606985 induces atypical ER-stress and cell death in prostate
cancer cells. Int J Oncol. 49:529–538. 2016.PubMed/NCBI
|
26
|
Bruchmann A, Roller C, Walther TV, Schäfer
G, Lehmusvaara S, Visakorpi T, Klocker H, Cato AC and Maddalo D:
Bcl-2 associated athanogene 5 (Bag5) is overexpressed in prostate
cancer and inhibits ER-stress induced apoptosis. BMC Cancer.
13:962013. View Article : Google Scholar : PubMed/NCBI
|
27
|
QiNan W, XiaGuang G, XiaoTian L, WuQuan D,
Ling Z and Bing C: Par-4/NF-kappaB mediates the apoptosis of islet
beta cells induced by glucolipotoxicity. J Diabetes Res.
4692478:20162016.
|
28
|
Qi W, Morales C, Cooke LS, Johnson B,
Somer B and Mahadevan D: Reciprocal feedback inhibition of the
androgen receptor and PI3K as a novel therapy for
castrate-sensitive and -resistant prostate cancer. Oncotarget.
6:41976–41987. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Casar B, Rimann I, Kato H, Shattil SJ,
Quigley JP and Deryugina EI: In vivo cleaved CDCP1 promotes early
tumor dissemination via complexing with activated β1 integrin and
induction of FAK/PI3K/Akt motility signaling. Oncogene. 33:255–268.
2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Xiu YL, Zhao Y, Gou WF, Chen S, Takano Y
and Zheng HC: Anacardic acid enhances the proliferation of human
ovarian cancer cells. PLoS One. 9:e993612014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kwon T, Youn H, Son B, Kim D, Seong KM,
Park S, Kim W and Youn B: DANGER is involved in high
glucose-induced radioresistance through inhibiting DAPK-mediated
anoikis in non-small cell lung cancer. Oncotarget. 7:7193–7206.
2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Dai L, Ma C, Zhang Z, Zeng S, Liu A, Tang
S, Ren Q, Sun Y and Xu C: DAPK promoter methylation and bladder
cancer risk: A systematic review and meta-analysis. PLoS One.
11:e01672282016. View Article : Google Scholar : PubMed/NCBI
|