DNA methylation and histone modifications as epigenetic regulation in prostate cancer (Review)
- Authors:
- Maria Nowacka-Zawisza
- Ewelina Wiśnik
-
Affiliations: Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland - Published online on: September 20, 2017 https://doi.org/10.3892/or.2017.5972
- Pages: 2587-2596
This article is mentioned in:
Abstract
Damaschke NA, Yang B, Bhusari S, Svaren JP and Jarrard DF: Epigenetic susceptibility factors for prostate cancer with aging. Prostate. 73:1721–1730. 2013. View Article : Google Scholar : PubMed/NCBI | |
Willard SS and Koochekpour S: Regulators of gene expression as biomarkers for prostate cancer. Am J Cancer Res. 2:620–657. 2012.PubMed/NCBI | |
Chin SP, Dickinson JL and Holloway AF: Epigenetic regulation of prostate cancer. Clin Epigenetics. 2:151–169. 2011. View Article : Google Scholar : PubMed/NCBI | |
Day TK and Bianco-Miotto T: Common gene pathways and families altered by DNA methylation in breast and prostate cancers. Endocr Relat Cancer. 20:R215–R232. 2013. View Article : Google Scholar : PubMed/NCBI | |
Majumdar S, Buckles E, Estrada J and Koochekpour S: Aberrant DNA methylation and prostate cancer. Curr Genomics. 12:486–505. 2011. View Article : Google Scholar : PubMed/NCBI | |
Subramaniam D, Thombre R, Dhar A and Anant S: DNA methyltransferases: A novel target for prevention and therapy. Front Oncol. 4:802014. View Article : Google Scholar : PubMed/NCBI | |
Buck-Koehntop BA and Defossez PA: On how mammalian transcription factors recognize methylated DNA. Epigenetics. 8:131–137. 2013. View Article : Google Scholar : PubMed/NCBI | |
Albany C, Alva AS, Aparicio AM, Singal R, Yellapragada S, Sonpavde G and Hahn NM: Epigenetics in prostate cancer. Prostate Cancer. 2011:5803182011. View Article : Google Scholar : PubMed/NCBI | |
Yang M and Park JY: DNA methylation in promoter region as biomarkers in prostate cancer. Methods Mol Biol. 863:67–109. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ashour N, Angulo JC, Andrés G, Alelú R, González-Corpas A, Toledo MV, Rodríguez-Barbero JM, López JI, Sánchez-Chapado M and Ropero S: A DNA hypermethylation profile reveals new potential biomarkers for prostate cancer diagnosis and prognosis. Prostate. 74:1171–1182. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gonzalgo ML, Pavlovich CP, Lee SM and Nelson WG: Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin Cancer Res. 9:2673–2677. 2003.PubMed/NCBI | |
Rouprêt M, Hupertan V, Yates DR, Catto JW, Rehman I, Meuth M, Ricci S, Lacave R, Cancel-Tassin G, de la Taille A, et al: Molecular detection of localized prostate cancer using quantitative methylation-specific PCR on urinary cells obtained following prostate massage. Clin Cancer Res. 13:1720–1725. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dumache R, Puiu M, Motoc M, Vernic C and Dumitrascu V: Prostate cancer molecular detection in plasma samples by glutathione S-transferase P1 (GSTP1) methylation analysis. Clin Lab. 60:847–852. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bastian PJ, Palapattu GS, Lin X, Yegnasubramanian S, Mangold LA, Trock B, Eisenberger MA, Partin AW and Nelson WG: Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin Cancer Res. 11:4037–4043. 2005. View Article : Google Scholar : PubMed/NCBI | |
Reibenwein J, Pils D, Horak P, Tomicek B, Goldner G, Worel N, Elandt K and Krainer M: Promoter hypermethylation of GSTP1, AR, and 14-3-3sigma in serum of prostate cancer patients and its clinical relevance. Prostate. 67:427–432. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mahon KL, Qu W, Devaney J, Paul C, Castillo L, Wykes RJ, Chatfield MD, Boyer MJ, Stockler MR, Marx G, et al: PRIMe consortium: Methylated Glutathione S-transferase 1 (mGSTP1) is a potential plasma free DNA epigenetic marker of prognosis and response to chemotherapy in castrate-resistant prostate cancer. Br J Cancer. 111:1802–1809. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kang GH, Lee S, Lee HJ and Hwang KS: Aberrant CpG island hypermethylation of multiple genes in prostate cancer and prostatic intraepithelial neoplasia. J Pathol. 202:233–240. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sidhu S, Deep JS, Sobti RC, Sharma VL and Thakur H: Methylation pattern of MGMT gene in relation to age, smoking, drinking and dietary habits as epigenetic biomarker in prostate cancer patients. GEBJ. 8:1–11. 2010. | |
Tang D, Kryvenko ON, Mitrache N, Do KC, Jankowski M, Chitale DA, Trudeau S, Rundle A, Belinsky SA and Rybicki BA: Methylation of the RARB gene increases prostate cancer risk in black Americans. J Urol. 190:317–324. 2013. View Article : Google Scholar : PubMed/NCBI | |
Keil KP, Abler LL, Mehta V, Altmann HM, Laporta J, Plisch EH, Suresh M, Hernandez LL and Vezina CM: DNA methylation of E-cadherin is a priming mechanism for prostate development. Dev Biol. 387:142–153. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kito H, Suzuki H, Ichikawa T, Sekita N, Kamiya N, Akakura K, Igarashi T, Nakayama T, Watanabe M, Harigaya K, et al: Hypermethylation of the CD44 gene is associated with progression and metastasis of human prostate cancer. Prostate. 49:110–115. 2001. View Article : Google Scholar : PubMed/NCBI | |
Singal R, Ferdinand L, Reis IM and Schlesselman JJ: Methylation of multiple genes in prostate cancer and the relationship with clinicopathological features of disease. Oncol Rep. 12:631–637. 2004.PubMed/NCBI | |
Woodson K, Hayes R, Wideroff L, Villaruz L and Tangrea J: Hypermethylation of GSTP1, CD44, and E-cadherin genes in prostate cancer among US Blacks and Whites. Prostate. 55:199–205. 2003. View Article : Google Scholar : PubMed/NCBI | |
Padar A, Sathyanarayana UG, Suzuki M, Maruyama R, Hsieh JT, Frenkel EP, Minna JD and Gazdar AF: Inactivation of cyclin D2 gene in prostate cancers by aberrant promoter methylation. Clin Cancer Res. 9:4730–4734. 2003.PubMed/NCBI | |
Henrique R, Costa VL, Cerveira N, Carvalho AL, Hoque MO, Ribeiro FR, Oliveira J, Teixeira MR, Sidransky D and Jerónimo C: Hypermethylation of Cyclin D2 is associated with loss of mRNA expression and tumor development in prostate cancer. J Mol Med. 84:911–918. 2006. View Article : Google Scholar : PubMed/NCBI | |
Das PM, Ramachandran K, Vanwert J, Ferdinand L, Gopisetty G, Reis IM and Singal R: Methylation mediated silencing of TMS1/ASC gene in prostate cancer. Mol Cancer. 5:282006. View Article : Google Scholar : PubMed/NCBI | |
Delgado-Cruzata L, Hruby GW, Gonzalez K, McKiernan J, Benson MC, Santella RM and Shen J: DNA methylation changes correlate with Gleason score and tumor stage in prostate cancer. DNA Cell Biol. 31:187–192. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Kron KJ, Pethe VV, Demetrashvili N, Nesbitt ME, Trachtenberg J, Ozcelik H, Fleshner NE, Briollais L, van der Kwast TH, et al: Association of tissue promoter methylation levels of APC, TGFβ2, HOXD3 and RASSF1A with prostate cancer progression. Int J Cancer. 129:2454–2462. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jerónimo C, Henrique R, Hoque MO, Ribeiro FR, Oliveira J, Fonseca D, Teixeira MR, Lopes C and Sidransky D: Quantitative RARbeta2 hypermethylation: A promising prostate cancer marker. Clin Cancer Res. 10:4010–4014. 2004. View Article : Google Scholar : PubMed/NCBI | |
Youssef EM, Chen XQ, Higuchi E, Kondo Y, Garcia-Manero G, Lotan R and Issa JP: Hypermethylation and silencing of the putative tumor suppressor Tazarotene-induced gene 1 in human cancers. Cancer Res. 64:2411–2417. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Liu L and Pfeifer GP: Methylation of the retinoid response gene TIG1 in prostate cancer correlates with methylation of the retinoic acid receptor beta gene. Oncogene. 23:2241–2249. 2004. View Article : Google Scholar : PubMed/NCBI | |
Choudhury JH and Ghosh SK: Promoter hypermethylation profiling identifies subtypes of head and neck cancer with distinct viral, environmental, genetic and survival characteristics. PLoS One. 10:e01298082015. View Article : Google Scholar : PubMed/NCBI | |
Lin JC, Wu YC, Wu CC, Shih PY, Wang WY and Chien YC: DNA methylation markers and serum α-fetoprotein level are prognostic factors in hepatocellular carcinoma. Ann Hepatol. 14:494–504. 2015.PubMed/NCBI | |
Zhang CY, Zhao YX, Xia RH, Han J, Wang BS, Tian Z, Wang LZ, Hu YH and Li J: RASSF1A promoter hypermethylation is a strong biomarker of poor survival in patients with salivary adenoid cystic carcinoma in a Chinese population. PLoS One. 9:e1101592014. View Article : Google Scholar : PubMed/NCBI | |
Maruyama R, Toyooka S, Toyooka KO, Virmani AK, Zöchbauer-Müller S, Farinas AJ, Minna JD, McConnell J, Frenkel EP and Gazdar AF: Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin Cancer Res. 8:514–519. 2002.PubMed/NCBI | |
Ge YZ, Xu LW, Jia RP, Xu Z, Feng YM, Wu R, Yu P, Zhao Y, Gui ZL, Tan SJ, et al: The association between RASSF1A promoter methylation and prostate cancer: Evidence from 19 published studies. Tumour Biol. 35:3881–3890. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pellacani D, Kestoras D, Droop AP, Frame FM, Berry PA, Lawrence MG, Stower MJ, Simms MS, Mann VM, Collins AT, et al: DNA hypermethylation in prostate cancer is a consequence of aberrant epithelial differentiation and hyperproliferation. Cell Death Differ. 21:761–773. 2014. View Article : Google Scholar : PubMed/NCBI | |
Florl AR, Steinhoff C, Müller M, Seifert HH, Hader C, Engers R, Ackermann R and Schulz WA: Coordinate hypermethylation at specific genes in prostate carcinoma precedes LINE-1 hypomethylation. Br J Cancer. 91:985–994. 2004.PubMed/NCBI | |
Schulz WA, Elo JP, Florl AR, Pennanen S, Santourlidis S, Engers R, Buchardt M, Seifert HH and Visakorpi T: Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer. 35:58–65. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C, Hicks JL, Morgan J, Cornish TC, Sutcliffe S, et al: Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol. 21:1156–1167. 2008. View Article : Google Scholar : PubMed/NCBI | |
LeBeau AM, Sevillano N, Markham K, Winter MB, Murphy ST, Hostetter DR, West J, Lowman H, Craik CS and VanBrocklin HF: Imaging active urokinase plasminogen activator in prostate cancer. Cancer Res. 75:1225–1235. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Y and Cozzi PJ: Targeting uPA/uPAR in prostate cancer. Cancer Treat Rev. 33:521–527. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ogishima T, Shiina H, Breault JE, Tabatabai L, Bassett WW, Enokida H, Li LC, Kawakami T, Urakami S, Ribeiro-Filho LA, et al: Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clin Cancer Res. 11:1028–1036. 2005.PubMed/NCBI | |
Tokizane T, Shiina H, Igawa M, Enokida H, Urakami S, Kawakami T, Ogishima T, Okino ST, Li LC, Tanaka Y, et al: Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer. Clin Cancer Res. 11:5793–5801. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Williamson M, Bott S, Brookman-Amissah N, Freeman A, Nariculam J, Hubank MJ, Ahmed A and Masters JR: Hypomethylation of WNT5A, CRIP1 and S100P in prostate cancer. Oncogene. 26:6560–6565. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shojima K, Sato A, Hanaki H, Tsujimoto I, Nakamura M, Hattori K, Sato Y, Dohi K, Hirata M, Yamamoto H, et al: Wnt5a promotes cancer cell invasion and proliferation by receptor-mediated endocytosis-dependent and -independent mechanisms, respectively. Sci Rep. 5:80422015. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto H, Oue N, Sato A, Hasegawa Y, Yamamoto H, Matsubara A, Yasui W and Kikuchi A: Wnt5a signaling is involved in the aggressiveness of prostate cancer and expression of metalloproteinase. Oncogene. 29:2036–2046. 2010. View Article : Google Scholar : PubMed/NCBI | |
Basu GD, Azorsa DO, Kiefer JA, Rojas AM, Tuzmen S, Barrett MT, Trent JM, Kallioniemi O and Mousses S: Functional evidence implicating S100P in prostate cancer progression. Int J Cancer. 123:330–339. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lambropoulou M, Deftereou TE, Kynigopoulos S, Patsias A, Anagnostopoulos C, Alexiadis G, Kotini A, Tsaroucha A, Nikolaidou C, Kiziridou A, et al: Co-expression of galectin-3 and CRIP-1 in endometrial cancer: Prognostic value and patient survival. Med Oncol. 33:82016. View Article : Google Scholar : PubMed/NCBI | |
Ludyga N, Englert S, Pflieger K, Rauser S, Braselmann H, Walch A, Auer G, Höfler H and Aubele M: The impact of cysteine-rich intestinal protein 1 (CRIP1) in human breast cancer. Mol Cancer. 12:282013. View Article : Google Scholar : PubMed/NCBI | |
Chervona Y and Costa M: Histone modifications and cancer: Biomarkers of prognosis? Am J Cancer Res. 2:589–597. 2012.PubMed/NCBI | |
Kurdistani SK: Histone modifications in cancer biology and prognosis. Prog Drug Res. 67:91–106. 2011.PubMed/NCBI | |
Chen S and Sang N: Histone deacetylase inhibitors: The epigenetic therapeutics that repress hypoxia-inducible factors. J Biomed Biotechnol. 2011:1979462011. View Article : Google Scholar : PubMed/NCBI | |
Crea F, Clermont PL, Mai A and Helgason CD: Histone modifications, stem cells and prostate cancer. Curr Pharm Des. 20:1687–1697. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cohen I, Poręba E, Kamieniarz K and Schneider R: Histone modifiers in cancer: Friends or foes? Genes Cancer. 2:631–647. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sawicka A and Seiser C: Histone H3 phosphorylation - a versatile chromatin modification for different occasions. Biochimie. 94:2193–2201. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nanni S, Priolo C, Grasselli A, D'Eletto M, Merola R, Moretti F, Gallucci M, De Carli P, Sentinelli S, Cianciulli AM, et al: Epithelial-restricted gene profile of primary cultures from human prostate tumors: A molecular approach to predict clinical behavior of prostate cancer. Mol Cancer Res. 4:79–92. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sedelnikova OA and Bonner WM: GammaH2AX in cancer cells: A potential biomarker for cancer diagnostics, prediction and recurrence. Cell Cycle. 5:2909–2913. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shaheen FS, Znojek P, Fisher A, Webster M, Plummer R, Gaughan L, Smith GC, Leung HY, Curtin NJ and Robson CN: Targeting the DNA double strand break repair machinery in prostate cancer. PLoS One. 6:e203112011. View Article : Google Scholar : PubMed/NCBI | |
Baptista T, Graça I, Sousa EJ, Oliveira AI, Costa NR, Costa-Pinheiro P, Amado F, Henrique R and Jerónimo C: Regulation of histone H2A.Z expression is mediated by sirtuin 1 in prostate cancer. Oncotarget. 4:1673–1685. 2013. View Article : Google Scholar : PubMed/NCBI | |
Monteiro FL, Baptista T, Amado F, Vitorino R, Jerónimo C and Helguero LA: Expression and functionality of histone H2A variants in cancer. Oncotarget. 5:3428–3443. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nowak M, Svensson MA, Carlsson J, Vogel W, Kebschull M, Wernert N, Kristiansen G, Andrén O, Braun M and Perner S: Prognostic significance of phospho-histone H3 in prostate carcinoma. World J Urol. 32:703–707. 2014. View Article : Google Scholar : PubMed/NCBI | |
Henrique R, Oliveira AI, Costa VL, Baptista T, Martins AT, Morais A, Oliveira J and Jerónimo C: Epigenetic regulation of MDR1 gene through post-translational histone modifications in prostate cancer. BMC Genomics. 14:8982013. View Article : Google Scholar : PubMed/NCBI | |
Yang YA and Yu J: EZH2, an epigenetic driver of prostate cancer. Protein Cell. 4:331–341. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schwartz YB and Pirrotta V: A new world of Polycombs: Unexpected partnerships and emerging functions. Nat Rev Genet. 14:853–864. 2013. View Article : Google Scholar : PubMed/NCBI | |
Piunti A and Shilatifard A: Epigenetic balance of gene expression by Polycomb and COMPASS families. Science. 352:aad97802016. View Article : Google Scholar : PubMed/NCBI | |
Wang QT: Epigenetic regulation of cardiac development and function by polycomb group and trithorax group proteins. Dev Dyn. 241:1021–1033. 2012. View Article : Google Scholar : PubMed/NCBI | |
Moison C, Senamaud-Beaufort C, Fourrière L, Champion C, Ceccaldi A, Lacomme S, Daunay A, Tost J, Arimondo PB and Guieysse-Peugeot AL: DNA methylation associated with polycomb repression in retinoic acid receptor β silencing. FASEB J. 27:1468–1478. 2013. View Article : Google Scholar : PubMed/NCBI | |
Simon JA and Lange CA: Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res. 647:21–29. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zeng X, Chen S and Huang H: Phosphorylation of EZH2 by CDK1 and CDK2: A possible regulatory mechanism of transmission of the H3K27me3 epigenetic mark through cell divisions. Cell Cycle. 10:579–583. 2011. View Article : Google Scholar : PubMed/NCBI | |
Clermont PL, Crea F and Helgason CD: Trithorax Genes in Prostate CancerAdvances in Prostate Cancer. Hamilton G: InTech; Croatia: pp. 541–564. 2013 | |
Daniunaite K, Jarmalaite S, Kalinauskaite N, Petroska D, Laurinavicius A, Lazutka JR and Jankevicius F: Prognostic value of RASSF1 promoter methylation in prostate cancer. J Urol. 192:1849–1855. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gurioli G, Salvi S, Martignano F, Foca F, Gunelli R, Costantini M, Cicchetti G, De Giorgi U, Sbarba PD, Calistri D, et al: Methylation pattern analysis in prostate cancer tissue: Identification of biomarkers using an MS-MLPA approach. J Transl Med. 14:2492016. View Article : Google Scholar : PubMed/NCBI | |
Ikromov O, Alkamal I, Magheli A, Ratert N, Sendeski M, Miller K, Krause H and Kempkensteffen C: Functional epigenetic analysis of prostate carcinoma: A role for seryl-tRNA synthetase? J Biomark 2014. 3621642014. | |
Litovkin K, Van Eynde A, Joniau S, Lerut E, Laenen A, Gevaert T, Gevaert O, Spahn M, Kneitz B, Gramme P, et al: DNA methylation-guided prediction of clinical failure in high-risk prostate cancer. PLoS One. 10:e01306512015. View Article : Google Scholar : PubMed/NCBI | |
Moritz R, Ellinger J, Nuhn P, Haese A, Müller SC, Graefen M, Schlomm T and Bastian PJ: DNA hypermethylation as a predictor of PSA recurrence in patients with low- and intermediate-grade prostate cancer. Anticancer Res. 33:5249–5254. 2013.PubMed/NCBI | |
Serenaite I, Daniunaite K, Jankevicius F, Laurinavicius A, Petroska D, Lazutka JR and Jarmalaite S: Heterogeneity of DNA methylation in multifocal prostate cancer. Virchows Arch. 466:53–59. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tan HL, Haffner MC, Esopi DM, Vaghasia AM, Giannico GA, Ross HM, Ghosh S, Hicks JL, Zheng Q, Sangoi AR, et al: Prostate adenocarcinomas aberrantly expressing p63 are molecularly distinct from usual-type prostatic adenocarcinomas. Mod Pathol. 28:446–456. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tsvetkova A, Todorova A, Todorov T, Georgiev G, Drandarska I and Mitev V: Molecular and clinicopathological aspects of prostate cancer in Bulgarian probands. Pathol Oncol Res. 21:969–976. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yoon HY, Kim SK, Kim YW, Kang HW, Lee SC, Ryu KH, Shon HS, Kim WJ and Kim YJ: Combined hypermethylation of APC and GSTP1 as a molecular marker for prostate cancer: Quantitative pyrosequencing analysis. J Biomol Screen. 17:987–992. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yoon HY, Kim YW, Kang HW, Kim WT, Yun SJ, Lee SC, Kim WJ and Kim YJ: DNA methylation of GSTP1 in human prostate tissues: Pyrosequencing analysis. Korean J Urol. 53:200–205. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Jiao H, Zhang X, Zhao R, Wang F, He W, Zong H, Fan Q and Wang L: Correlation between the expression of DNMT1, and GSTP1 and APC, and the methylation status of GSTP1 and APC in association with their clinical significance in prostate cancer. Mol Med Rep. 12:141–146. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bastian PJ, Ellinger J, Heukamp LC, Kahl P, Müller SC and von Rücker A: Prognostic value of CpG island hypermethylation at PTGS2, RAR-beta, EDNRB, and other gene loci in patients undergoing radical prostatectomy. Eur Urol. 51:665–674; discussion 674. 2007. View Article : Google Scholar : PubMed/NCBI | |
Müller A and Florek M: 5-Azacytidine/Azacitidine. Recent Results Cancer Res. 184:159–170. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yoon HY, Kim YW, Kang HW, Kim WT, Yun SJ, Lee SC, Kim WJ and Kim YJ: Pyrosequencing analysis of APC methylation level in human prostate tissues: A molecular marker for prostate cancer. Korean J Urol. 54:194–198. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yaqinuddin A, Qureshi SA, Pervez S, Bashir MU, Nazir R and Abbas F: Frequent DNA hypermethylation at the RASSF1A and APC gene loci in prostate cancer patients of Pakistani Origin. ISRN Urol. 2013:6272492013.PubMed/NCBI | |
Olkhov-Mitsel E, Zdravic D, Kron K, van der Kwast T, Fleshner N and Bapat B: Novel multiplex MethyLight protocol for detection of DNA methylation in patient tissues and bodily fluids. Sci Rep. 4:44322014. View Article : Google Scholar : PubMed/NCBI | |
Pakneshan P, Szyf M and Rabbani SA: Hypomethylation of urokinase (uPA) promoter in breast and prostate cancer: Prognostic and therapeutic implications. Curr Cancer Drug Targets. 5:471–488. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hagelgans A, Menschikowski M, Fuessel S, Nacke B, Arneth BM, Wirth MP and Siegert G: Deregulated expression of urokinase and its inhibitor type 1 in prostate cancer cells: Role of epigenetic mechanisms. Exp Mol Pathol. 94:458–465. 2013. View Article : Google Scholar : PubMed/NCBI |