1
|
Liu T, Liu X and Li W: Tetrandrine, a
Chinese plant-derived alkaloid, is a potential candidate for cancer
chemotherapy. Oncotarget. 7:40800–40815. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Volm M and Efferth T: Prediction of Cancer
Drug Resistance and Implications for Personalized Medicine. Front
Oncol. 5:2822015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Damaskos C, Karatzas T, Nikolidakis L,
Kostakis ID, Karamaroudis S, Boutsikos G, Damaskou Z, Kostakis A
and Kouraklis G: Histone deacetylase (HDAC) inhibitors: Current
evidence for therapeutic activities in pancreatic cancer.
Anticancer Res. 35:3129–3135. 2015.PubMed/NCBI
|
4
|
Bukowska B, Gajek A and Marczak A: Two
drugs are better than one. A short history of combined therapy of
ovarian cancer. Contemp Oncol. 19:350–353. 2015.
|
5
|
Drazic A, Myklebust LM, Ree R and Arnesen
T: The world of protein acetylation. Biochim Biophys Acta.
1864:1372–1401. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhang C, Zhong JF, Stucky A, Chen XL,
Press MF and Zhang X: Histone acetylation: novel target for the
treatment of acute lymphoblastic leukemia. Clin Epigenetics.
7:1172015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mathias RA, Guise AJ and Cristea IM:
Post-translational modifications regulate class IIa histone
deacetylase (HDAC) function in health and disease. Mol Cell
Proteomics. 14:456–470. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang H, Shang YP, Chen HY and Li J:
Histone deacetylases function as novel potential therapeutic
targets for cancer. Hepatol Res. Jul 26–2016.(Epub ahead of print).
doi: 10.1111/hepr.12757.
|
9
|
Gan YH and Zhang S: PTEN/AKT pathway
involved in histone deacetylases inhibitor induced cell growth
inhibition and apoptosis of oral squamous cell carcinoma cells.
Oral Oncol. 45:e150–e154. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Huang WJ, Liang YC, Chuang SE, Chi LL, Lee
CY, Lin CW, Chen AL, Huang JS, Chiu CJ, Lee CF, et al: NBM-HD-1: A
novel histone deacetylase inhibitor with anticancer activity. Evid
Based Complement Alternat Med. 2012:7814172012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Manal M, Chandrasekar MJ, Priya J Gomathi
and Nanjan MJ: Inhibitors of histone deacetylase as antitumor
agents: A critical review. Bioorg Chem. 67:18–42. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ossenkoppele GJ, Lowenberg B, Zachee P,
Vey N, Breems D, Van de Loosdrecht AA, Davidson AH, Wells G,
Needham L, Bawden L, et al: A phase I first-in-human study with
tefinostat - a monocyte/macrophage targeted histone deacetylase
inhibitor - in patients with advanced haematological malignancies.
Br J Haematol. 162:191–201. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Witt O, Deubzer HE, Milde T and Oehme I:
HDAC family: What are the cancer relevant targets? Cancer Lett.
277:8–21. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang Y, Kwon S, Yamaguchi T, Cubizolles
F, Rousseaux S, Kneissel M, Cao C, Li N, Cheng HL, Chua K, et al:
Mice lacking histone deacetylase 6 have hyperacetylated tubulin but
are viable and develop normally. Mol Cell Biol. 28:1688–1701. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
McConkey DJ, White M and Yan W: HDAC
inhibitor modulation of proteotoxicity as a therapeutic approach in
cancer. Adv Cancer Res. 116:131–163. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Saji S, Kawakami M, Hayashi S, Yoshida N,
Hirose M, Horiguchi S, Itoh A, Funata N, Schreiber SL, Yoshida M,
et al: Significance of HDAC6 regulation via estrogen signaling for
cell motility and prognosis in estrogen receptor-positive breast
cancer. Oncogene. 24:4531–4539. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Meng Z, Jia LF and Gan YH: PTEN activation
through K163 acetylation by inhibiting HDAC6 contributes to tumour
inhibition. Oncogene. 35:2333–2344. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Gu J, Wang D, Zhang J, Zhu Y, Li Y, Chen
H, Shi M, Wang X, Shen B, Deng X, et al: GFRα2 prompts cell growth
and chemoresistance through down-regulating tumor suppressor gene
PTEN via Mir-17-5p in pancreatic cancer. Cancer Lett. 380:434–441.
2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Milella M, Falcone I, Conciatori F, Incani
U Cesta, Del Curatolo A, Inzerilli N, Nuzzo CM, Vaccaro V, Vari S,
Cognetti F, et al: PTEN: Multiple functions in human malignant
tumors. Front Oncol. 5:242015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tesio M, Trinquand A, Macintyre E and
Asnafi V: Oncogenic PTEN functions and models in T-cell
malignancies. Oncogene. 35:3887–3896. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Vazquez F, Matsuoka S, Sellers WR,
Yanagida T, Ueda M and Devreotes PN: Tumor suppressor PTEN acts
through dynamic interaction with the plasma membrane. Proc Natl
Acad Sci USA. 103:pp. 3633–3638. 2006; View Article : Google Scholar : PubMed/NCBI
|
22
|
Meng Z and Gan YH: Activating PTEN by
COX-2 inhibitors antagonizes radiation-induced AKT activation
contributing to radiosensitization. Biochem Biophys Res Commun.
460:198–204. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ke J, Yang Y, Che Q, Jiang F, Wang H, Chen
Z, Zhu M, Tong H, Zhang H, Yan X, et al: Prostaglandin E2 (PGE2)
promotes proliferation and invasion by enhancing SUMO-1 activity
via EP4 receptor in endometrial cancer. Tumour Biol.
37:12203–12211. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gan L, Qiu Z, Huang J, Li Y, Huang H,
Xiang T, Wan J, Hui T, Lin Y, Li H, et al: Cyclooxygenase-2 in
tumor-associated macrophages promotes metastatic potential of
breast cancer cells through Akt pathway. Int J Biol Sci.
12:1533–1543. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Salehifar E and Hosseinimehr SJ: The use
of cyclooxygenase-2 inhibitors for improvement of efficacy of
radiotherapy in cancers. Drug Discov Today. 21:654–662. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Vosooghi M and Amini M: The discovery and
development of cyclooxygenase-2 inhibitors as potential anticancer
therapies. Expert Opin Drug Discov. 9:255–267. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Liu R, Xu KP and Tan GS: Cyclooxygenase-2
inhibitors in lung cancer treatment: Bench to bed. Eur J Pharmacol.
769:127–133. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang X, Li G, Wang A, Zhang Z, Merchan JR
and Halmos B: Combined histone deacetylase and cyclooxygenase
inhibition achieves enhanced antiangiogenic effects in lung cancer
cells. Mol Carcinog. 52:218–228. 2013. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Gioanni J, Fischel JL, Lambert JC, Demard
F, Mazeau C, Zanghellini E, Ettore F, Formento P, Chauvel P,
Lalanne CM, et al: Two new human tumor cell lines derived from
squamous cell carcinomas of the tongue: Establishment,
characterization and response to cytotoxic treatment. Eur J Cancer
Clin Oncol. 24:1445–1455. 1988. View Article : Google Scholar : PubMed/NCBI
|
30
|
Li SL: Establishment of a human cancer
cell line from adenoid cystic carcinoma of the minor salivary
gland. Zhonghua Kou Qiang Yi Xue Za Zhi. 25(29-31): 621990.(In
Chinese).
|
31
|
Wu Y, Zhu Y, Li S, Zeng M, Chu J, Hu P, Li
J, Guo Q, Lv XB and Huang G: Terrein performs antitumor functions
on esophageal cancer cells by inhibiting cell proliferation and
synergistic interaction with cisplatin. Oncol Lett. 13:2805–2810.
2017.PubMed/NCBI
|
32
|
Kou XX, Hao T, Meng Z, Zhou YH and Gan YH:
Acetylated Sp1 inhibits PTEN expression through binding to PTEN
core promoter and recruitment of HDAC1 and promotes cancer cell
migration and invasion. Carcinogenesis. 34:58–67. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Abdelrahim M and Safe S: Cyclooxygenase-2
inhibitors decrease vascular endothelial growth factor expression
in colon cancer cells by enhanced degradation of Sp1 and Sp4
proteins. Mol Pharmacol. 68:317–329. 2005.PubMed/NCBI
|