1
|
Jemal A, Siegel R, Xu J and Ward E: Cancer
statistics, 2010. CA Cancer J Clin. 60:277–300. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ferlay J, Shin HR, Bray F, Forman D,
Mathers C and Parkin DM: Estimates of worldwide burden of cancer in
2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Botteri E, Iodice S, Bagnardi V, Raimondi
S, Lowenfels AB and Maisonneuve P: Smoking and colorectal cancer: A
meta-analysis. JAMA. 300:2765–2778. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lee IM, Shiroma EJ, Lobelo F, Puska P,
Blair SN and Katzmarzyk PT; Lancet Physical Activity Series Working
Group, : Effect of physical inactivity on major non-communicable
diseases worldwide: An analysis of burden of disease and life
expectancy. Lancet. 380:219–229. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Meyerhardt JA and Mayer RJ: Systemic
therapy for colorectal cancer. N Engl J Med. 352:476–487. 2005.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Juez I, Rubio C and Figueras J:
Multidisciplinary approach of colorectal liver metastases. Clin
Transl Oncol. 13:721–727. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hayes J, Peruzzi PP and Lawler S:
MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol
Med. 20:460–469. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Xue J, Niu J, Wu J and Wu ZH: MicroRNAs in
cancer therapeutic response: Friend and foe. World J Clin Oncol.
5:730–743. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tutar L, Tutar E, Özgür A and Tutar Y:
Therapeutic targeting of microRNAs in cancer: Future perspectives.
Drug Dev Res. 76:382–388. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Stahlhut C and Slack FJ: MicroRNAs and the
cancer phenotype: Profiling, signatures and clinical implications.
Genome Med. 5:1112013. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Farazi TA, Hoell JI, Morozov P and Tuschl
T: MicroRNAs in human cancer. Adv Exp Med Biol. 774:1–20. 2013.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Guo F, Luo Y, Mu YF, Qin SL, Qi Y, Qiu YE
and Zhong M: miR-193b directly targets STMN1 and inhibits the
malignant phenotype in colorectal cancer. Am J Cancer Res.
6:2463–2475. 2016.PubMed/NCBI
|
14
|
Ding L, Zhang S, Xu M, Zhang R, Sui P and
Yang Q: MicroRNA-27a contributes to the malignant behavior of
gastric cancer cells by directly targeting PH domain and
leucine-rich repeat protein phosphatase 2. J Exp Clin Cancer Res.
36:452017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Huang L, Li F, Deng P and Hu C:
MicroRNA-223 promotes tumor progression in lung cancer A549 cells
via activation of the NF-κB signaling pathway. Oncol Res.
24:405–413. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kong Q, Chen XS, Tian T, Xia XY and Xu P:
MicroRNA-194 suppresses prostate cancer migration and invasion by
downregulating human nuclear distribution protein. Oncol Rep.
37:803–812. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yang F, Li Y, Xu L, Zhu Y, Gao H, Zhen L
and Fang L: miR-17 as a diagnostic biomarker regulates cell
proliferation in breast cancer. Onco Targets Ther. 10:543–550.
2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang B, Pan X, Cobb GP and Anderson TA:
microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12.
2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Xiang X, Mei H, Zhao X, Pu J, Li D, Qu H,
Jiao W, Zhao J, Huang K, Zheng L, et al: miRNA-337-3p suppresses
neuroblastoma progression by repressing the transcription of matrix
metalloproteinase 14. Oncotarget. 6:22452–22466. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang R, Leng H, Huang J, Du Y, Wang Y,
Zang W, Chen X and Zhao G: miR-337 regulates the proliferation and
invasion in pancreatic ductal adenocarcinoma by targeting HOXB7.
Diagn Pathol. 9:1712014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang R, Zheng S, Du Y, Wang Y, Zang W and
Zhao G: Levels of HOXB7 and miR-337 in pancreatic ductal
adenocarcinoma patients. Diagn Pathol. 9:612014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen S, Wang Y, Zhang Y and Wan Y: Low
expression of PKCα and high expression of KRAS predict poor
prognosis in patients with colorectal cancer. Oncol Lett.
12:1655–1660. 2016.PubMed/NCBI
|
24
|
Hubbard PA, Moody CL and Murali R:
Allosteric modulation of Ras and the PI3K/AKT/mTOR pathway:
Emerging therapeutic opportunities. Front Physiol. 5:4782014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Calvo F, Agudo-Ibáñez L and Crespo P: The
Ras-ERK pathway: Understanding site-specific signaling provides
hope of new anti-tumor therapies. BioEssays. 32:412–421. 2010.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Guda K, Veigl ML, Varadan V, Nosrati A,
Ravi L, Lutterbaugh J, Beard L, Willson JK, Sedwick WD, Wang ZJ, et
al: Novel recurrently mutated genes in African American colon
cancers. Proc Natl Acad Sci USA. 112:pp. 1149–1154. 2015;
View Article : Google Scholar : PubMed/NCBI
|
27
|
Bardhan K and Liu K: Epigenetics and
colorectal cancer pathogenesis. Cancers (Basel). 5:676–713. 2013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Kang X, Wang M, Wang H, Shen X and Guan W:
MiR-4282 suppresses proliferation and mobility of human colorectal
carcinoma cells by targeting semaphorin 3E. Panminerva Med.
58:197–205. 2016.PubMed/NCBI
|
29
|
Fan C, Lin Y, Mao Y, Huang Z, Liu AY, Ma
H, Yu D, Maitikabili A, Xiao H, Zhang C, et al: MicroRNA-543
suppresses colorectal cancer growth and metastasis by targeting
KRAS, MTA1 and HMGA2. Oncotarget. 7:21825–21839. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Long HC, Gao X, Lei CJ, Zhu B, Li L, Zeng
C, Huang JB and Feng JR: miR-542-3p inhibits the growth and
invasion of colorectal cancer cells through targeted regulation of
cortactin. Int J Mol Med. 37:1112–1118. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang Z, Wang J, Yang Y, Hao B, Wang R, Li
Y and Wu Q: Loss of hsa-miR-337-3p expression is associated with
lymph node metastasis of human gastric cancer. J Exp Clin Cancer
Res. 32:762013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zheng L, Jiao W, Mei H, Song H, Li D,
Xiang X, Chen Y, Yang F, Li H, Huang K, et al: miRNA-337-3p
inhibits gastric cancer progression through repressing myeloid zinc
finger 1-facilitated expression of matrix metalloproteinase 14.
Oncotarget. 7:40314–40328. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Du L, Subauste MC, DeSevo C, Zhao Z, Baker
M, Borkowski R, Schageman JJ, Greer R, Yang CR, Suraokar M, et al:
miR-337-3p and its targets STAT3 and RAP1A modulate taxane
sensitivity in non-small cell lung cancers. PLoS One. 7:e391672012.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Kang HS, Kim J, Jang SG, Kwon SY, Park YS,
Green JE, Kim HK and Ro J: MicroRNA signature for HER2-positive
breast and gastric cancer. Anticancer Res. 34:3807–3810.
2014.PubMed/NCBI
|
35
|
Wu C, Wang C, Guan X, Liu Y, Li D, Zhou X,
Zhang Y, Chen X, Wang J, Zen K, et al: Diagnostic and prognostic
implications of a serum miRNA panel in oesophageal squamous cell
carcinoma. PLoS One. 9:e922922014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhong N, Sun J, Min Z, Zhao W, Zhang R,
Wang W, Tian J, Tian L, Ma J, Li D, et al: MicroRNA-337 is
associated with chondrogenesis through regulating TGFBR2
expression. Osteoarthritis Cartilage. 20:593–602. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Janssen KP, Alberici P, Fsihi H, Gaspar C,
Breukel C, Franken P, Rosty C, Abal M, El Marjou F, Smits R, et al:
APC and oncogenic KRAS are synergistic in enhancing Wnt signaling
in intestinal tumor formation and progression. Gastroenterology.
131:1096–1109. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Li M, Liu W, Zhu YF, Chen YL, Zhang BZ and
Wang R: Correlation of COX-2 and K-ras expression to clinical
outcome in gastric cancer. Acta Oncol. 45:1115–1119. 2006.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Przybojewska B, Jagiello A and Jalmuzna P:
H-RAS, K-RAS, and N-RAS gene activation in human bladder cancers.
Cancer Genet Cytogenet. 121:73–77. 2000. View Article : Google Scholar : PubMed/NCBI
|
40
|
de Mello RA, Marques DS, Medeiros R and
Araújo AM: Epidermal growth factor receptor and K-Ras in non-small
cell lung cancer-molecular pathways involved and targeted
therapies. World J Clin Oncol. 2:367–376. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Lisiansky V, Naumov I, Shapira S, Kazanov
D, Starr A, Arber N and Kraus S: Gene therapy of pancreatic cancer
targeting the K-Ras oncogene. Cancer Gene Ther. 19:862–869. 2012.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Kalikaki A, Politaki H, Souglakos J,
Apostolaki S, Papadimitraki E, Georgoulia N, Tzardi M, Mavroudis D,
Georgoulias V and Voutsina A: KRAS genotypic changes of circulating
tumor cells during treatment of patients with metastatic colorectal
cancer. PLoS One. 9:e1049022014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Campbell PM, Groehler AL, Lee KM,
Ouellette MM, Khazak V and Der CJ: K-Ras promotes growth
transformation and invasion of immortalized human pancreatic cells
by Raf and phosphatidylinositol 3-kinase signaling. Cancer Res.
67:2098–2106. 2007. View Article : Google Scholar : PubMed/NCBI
|