1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Baselga J, Campone M, Piccart M, Burris HA
III, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KI, Lebrun
F, et al: Everolimus in postmenopausal hormone-receptor-positive
advanced breast cancer. N Engl J Med. 366:520–529. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Verma S, Miles D, Gianni L, Krop IE,
Welslau M, Baselga J, Pegram M, Oh DY, Diéras V, Guardino E, et al
EMILIA Study Group, : Trastuzumab emtansine for HER2-positive
advanced breast cancer. N Engl J Med. 367:1783–1791. 2012.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Swain SM, Baselga J, Kim SB, Ro J,
Semiglazov V, Campone M, Ciruelos E, Ferrero JM, Schneeweiss A,
Heeson S, et al CLEOPATRA Study Group, : Pertuzumab, trastuzumab,
and docetaxel in HER2-positive metastatic breast cancer. N Engl J
Med. 372:724–734. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rastogi P, Anderson SJ, Bear HD, Geyer CE,
Kahlenberg MS, Robidoux A, Margolese RG, Hoehn JL, Vogel VG, Dakhil
SR, et al: Preoperative chemotherapy: Updates of National Surgical
Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin
Oncol. 26:778–785. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Smith IC, Heys SD, Hutcheon AW, Miller ID,
Payne S, Gilbert FJ, Ah-See AK, Eremin O, Walker LG, Sarkar TK, et
al: Neoadjuvant chemotherapy in breast cancer: Significantly
enhanced response with docetaxel. J Clin Oncol. 20:1456–1466. 2002.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Ekert PG, Silke J and Vaux DL: Caspase
inhibitors. Cell Death Differ. 6:1081–1086. 1999. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chai J, Shiozaki E, Srinivasula SM, Wu Q,
Datta P, Alnemri ES and Shi Y: Structural basis of caspase-7
inhibition by XIAP. Cell. 104:769–780. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Huang Y, Park YC, Rich RL, Segal D, Myszka
DG and Wu H: Structural basis of caspase inhibition by XIAP:
Differential roles of the linker versus the BIR domain. Cell.
104:781–790. 2001. View Article : Google Scholar : PubMed/NCBI
|
10
|
Riedl SJ, Renatus M, Schwarzenbacher R,
Zhou Q, Sun C, Fesik SW, Liddington RC and Salvesen GS: Structural
basis for the inhibition of caspase-3 by XIAP. Cell. 104:791–800.
2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ,
Li P, Srinivasula SM, Alnemri ES, Fairman R and Shi Y: Mechanism of
XIAP-mediated inhibition of caspase-9. Mol Cell. 11:519–527. 2003.
View Article : Google Scholar : PubMed/NCBI
|
12
|
de Moraes G Nestal, Delbue D, Silva KL,
Robaina MC, Khongkow P, Gomes AR, Zona S, Crocamo S, Mencalha AL,
Magalhães LM, et al: FOXM1 targets XIAP and Survivin to modulate
breast cancer survival and chemoresistance. Cell Signal.
27:2496–2505. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lima RT, Martins LM, Guimarães JE, Sambade
C and Vasconcelos MH: Specific downregulation of bcl-2 and xIAP by
RNAi enhances the effects of chemotherapeutic agents in MCF-7 human
breast cancer cells. Cancer Gene Ther. 11:309–316. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bilim V, Kasahara T, Hara N, Takahashi K
and Tomita Y: Role of XIAP in the malignant phenotype of
transitional cell cancer (TCC) and therapeutic activity of XIAP
antisense oligonucleotides against multidrug-resistant TCC in
vitro. Int J Cancer. 103:29–37. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sasaki H, Sheng Y, Kotsuji F and Tsang BK:
Down-regulation of X-linked inhibitor of apoptosis protein induces
apoptosis in chemoresistant human ovarian cancer cells. Cancer Res.
60:5659–5666. 2000.PubMed/NCBI
|
16
|
Jaffer S, Orta L, Sunkara S, Sabo E and
Burstein DE: Immunohistochemical detection of antiapoptotic protein
X-linked inhibitor of apoptosis in mammary carcinoma. Hum Pathol.
38:864–870. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Xu YC, Liu Q, Dai JQ, Yin ZQ, Tang L, Ma
Y, Lin XL and Wang HX: Tissue microarray analysis of X-linked
inhibitor of apoptosis (XIAP) expression in breast cancer patients.
Med Oncol. 31:7642014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Stehlik C, de Martin R, Kumabashiri I,
Schmid JA, Binder BR and Lipp J: Nuclear factor
(NF)-kappaB-regulated X-chromosome-linked iap gene expression
protects endothelial cells from tumor necrosis factor alpha-induced
apoptosis. J Exp Med. 188:211–216. 1998. View Article : Google Scholar : PubMed/NCBI
|
19
|
Warner JR and McIntosh KB: How common are
extraribosomal functions of ribosomal proteins? Mol Cell. 34:3–11.
2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang Y and Lu H: Signaling to p53:
Ribosomal proteins find their way. Cancer Cell. 16:369–377. 2009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Wan F, Anderson DE, Barnitz RA, Snow A,
Bidere N, Zheng L, Hegde V, Lam LT, Staudt LM, Levens D, et al:
Ribosomal protein S3: A KH domain subunit in NF-kappaB complexes
that mediates selective gene regulation. Cell. 131:927–939. 2007.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Kim J, Chubatsu LS, Admon A, Stahl J,
Fellous R and Linn S: Implication of mammalian ribosomal protein S3
in the processing of DNA damage. J Biol Chem. 270:13620–13629.
1995. View Article : Google Scholar : PubMed/NCBI
|
23
|
Woo JH, Kim YH, Choi YJ, Kim DG, Lee KS,
Bae JH, Min DS, Chang JS, Jeong YJ, Lee YH, et al: Molecular
mechanisms of curcumin-induced cytotoxicity: Induction of apoptosis
through generation of reactive oxygen species, down-regulation of
Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt.
Carcinogenesis. 24:1199–1208. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Park S, Cho DH, Andera L, Suh N and Kim I:
Curcumin enhances TRAIL-induced apoptosis of breast cancer cells by
regulating apoptosis-related proteins. Mol Cell Biochem. 383:39–48.
2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Iizumi Y, Oishi M, Taniguchi T, Goi W,
Sowa Y and Sakai T: The flavonoid apigenin downregulates CDK1 by
directly targeting ribosomal protein S9. PLoS One. 8:e732192013.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Yamaguchi N, Ito T, Azuma S, Ito E, Honma
R, Yanagisawa Y, Nishikawa A, Kawamura M, Imai J, Watanabe S, et
al: Constitutive activation of nuclear factor-kappaB is
preferentially involved in the proliferation of basal-like subtype
breast cancer cell lines. Cancer Sci. 100:1668–1674. 2009.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Lohrum MAE, Ludwig RL, Kubbutat MH, Hanlon
M and Vousden KH: Regulation of HDM2 activity by the ribosomal
protein L11. Cancer Cell. 3:577–587. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Dai MS and Lu H: Inhibition of
MDM2-mediated p53 ubiquitination and degradation by ribosomal
protein L5. J Biol Chem. 279:44475–44482. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Dai MS, Zeng SX, Jin Y, Sun XX, David L
and Lu H: Ribosomal protein L23 activates p53 by inhibiting MDM2
function in response to ribosomal perturbation but not to
translation inhibition. Mol Cell Biol. 24:7654–7668. 2004.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Lin NU, Vanderplas A, Hughes ME, Theriault
RL, Edge SB, Wong YN, Blayney DW, Niland JC, Winer EP and Weeks JC:
Clinicopathologic features, patterns of recurrence, and survival
among women with triple-negative breast cancer in the National
Comprehensive Cancer Network. Cancer. 118:5463–5472. 2012.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Dent R, Trudeau M, Pritchard KI, Hanna WM,
Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P and Narod SA:
Triple-negative breast cancer: Clinical features and patterns of
recurrence. Clin Cancer Res. 13:4429–4434. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu S, Zhang P, Chen Z, Liu M, Li X and
Tang H: MicroRNA-7 downregulates XIAP expression to suppress cell
growth and promote apoptosis in cervical cancer cells. FEBS Lett.
587:2247–2253. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Xie Y, Tobin LA, Camps J, Wangsa D, Yang
J, Rao M, Witasp E, Awad KS, Yoo N, Ried T, et al: MicroRNA-24
regulates XIAP to reduce the apoptosis threshold in cancer cells.
Oncogene. 32:2442–2451. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Li X, Chen W, Zeng W, Wan C, Duan S and
Jiang S: microRNA-137 promotes apoptosis in ovarian cancer cells
via the regulation of XIAP. Br J Cancer. 116:66–76. 2017.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Ren Y, Han X, Yu K, Sun S, Zhen L, Li Z
and Wang S: microRNA-200c downregulates XIAP expression to suppress
proliferation and promote apoptosis of triple-negative breast
cancer cells. Mol Med Rep. 10:315–321. 2014.PubMed/NCBI
|
36
|
Wang C, Ju H, Shen C and Tong Z: miR-429
mediates δ-tocotrienol-induced apoptosis in triple-negative breast
cancer cells by targeting XIAP. Int J Clin Exp Med. 8:15648–15656.
2015.PubMed/NCBI
|
37
|
Ryu YS, Lee Y, Lee KW, Hwang CY, Maeng JS,
Kim JH, Seo YS, You KH, Song B and Kwon KS: TRIM32 protein
sensitizes cells to tumor necrosis factor (TNFα)-induced apoptosis
via its RING domain-dependent E3 ligase activity against X-linked
inhibitor of apoptosis (XIAP). J Biol Chem. 286:25729–25738. 2011.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Li C, Jung S, Lee S, Jeong D, Yang Y, Kim
KI, Lim JS, Cheon CI, Kim C, Kang YS, et al: Nutrient/serum
starvation derived TRIP-Br3 down-regulation accelerates apoptosis
by destabilizing XIAP. Oncotarget. 6:7522–7535. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wang N, Feng Y, Zhu M, Siu FM, Ng KM and
Che CM: A novel mechanism of XIAP degradation induced by
timosaponin AIII in hepatocellular carcinoma. Biochim Biophys Acta.
1833:2890–2899. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hosokawa N, Hosokawa Y, Sakai T, Yoshida
M, Marui N, Nishino H, Kawai K and Aoike A: Inhibitory effect of
quercetin on the synthesis of a possibly cell-cycle-related 17-kDa
protein, in human colon cancer cells. Int J Cancer. 45:1119–1124.
1990. View Article : Google Scholar : PubMed/NCBI
|
41
|
Horinaka M, Yoshida T, Shiraishi T, Nakata
S, Wakada M, Nakanishi R, Nishino H, Matsui H and Sakai T: Luteolin
induces apoptosis via death receptor 5 upregulation in human
malignant tumor cells. Oncogene. 24:7180–7189. 2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Matsui TA, Sowa Y, Yoshida T, Murata H,
Horinaka M, Wakada M, Nakanishi R, Sakabe T, Kubo T and Sakai T:
Sulforaphane enhances TRAIL-induced apoptosis through the induction
of DR5 expression in human osteosarcoma cells. Carcinogenesis.
27:1768–1777. 2006. View Article : Google Scholar : PubMed/NCBI
|
43
|
Taniguchi H, Yoshida T, Horinaka M, Yasuda
T, Goda AE, Konishi M, Wakada M, Kataoka K, Yoshikawa T and Sakai
T: Baicalein overcomes tumor necrosis factor-related
apoptosis-inducing ligand resistance via two different
cell-specific pathways in cancer cells but not in normal cells.
Cancer Res. 68:8918–8927. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ichikawa M, Sowa Y, Iizumi Y, Aono Y and
Sakai T: Resibufogenin induces G1-phase arrest through the
proteasomal degradation of cyclin D1 in human malignant tumor
cells. PLoS One. 10:e01298512015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kume K, Iizumi Y, Shimada M, Ito Y, Kishi
T, Yamaguchi Y and Handa H: Role of N-end rule ubiquitin ligases
UBR1 and UBR2 in regulating the leucine-mTOR signaling pathway.
Genes Cells. 15:339–349. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Taniguchi T, Iizumi Y, Watanabe M, Masuda
M, Morita M, Aono Y, Toriyama S, Oishi M, Goi W and Sakai T:
Resveratrol directly targets DDX5 resulting in suppression of the
mTORC1 pathway in prostate cancer. Cell Death Dis. 7:e22112016.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Watanabe M, Iizumi Y, Sukeno M,
Iizuka-Ohashi M, Sowa Y and Sakai T: The pleiotropic regulation of
cyclin D1 by newly identified sesaminol-binding protein ANT2.
Oncogenesis. 6:e3112017. View Article : Google Scholar : PubMed/NCBI
|