1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Engström W, Darbre P, Eriksson S, Gulliver
L, Hultman T, Karamouzis MV, Klaunig JE, Mehta R, Moorwood K,
Sanderson T, et al: The potential for chemical mixtures from the
environment to enable the cancer hallmark of sustained
proliferative signalling. Carcinogenesis. 36 Suppl 1:S38–S60. 2015.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhang C, Ding XP, Zhao QN, Yang XJ, An SM,
Wang H, Xu L, Zhu L and Chen HZ: Role of α7-nicotinic acetylcholine
receptor in nicotine-induced invasion and epithelial-to-mesenchymal
transition in human non-small cell lung cancer cells. Oncotarget.
7:59199–59208. 2016.PubMed/NCBI
|
6
|
Davis R, Rizwani W, Banerjee S, Kovacs M,
Haura E, Coppola D and Chellappan S: Nicotine promotes tumor growth
and metastasis in mouse models of lung cancer. PLoS One.
4:e75242009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zheng Y, Ritzenthaler JD, Roman J and Han
S: Nicotine stimulates human lung cancer cell growth by inducing
fibronectin expression. Am J Respir Cell Mol Biol. 37:681–690.
2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Albuquerque EX, Pereira EF, Alkondon M and
Rogers SW: Mammalian nicotinic acetylcholine receptors: From
structure to function. Physiol Rev. 89:73–120. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gong WY, Wu JF, Liu BJ, Zhang HY, Cao YX,
Sun J, Lv YB, Wu X and Dong JC: Flavonoid components in
Scutellaria baicalensis inhibit nicotine-induced
proliferation, metastasis and lung cancer-associated inflammation
in vitro. Int J Oncol. 44:1561–1570. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Paleari L, Negri E, Catassi A, Cilli M,
Servent D, D'Angelillo R, Cesario A, Russo P and Fini M: Inhibition
of nonneuronal alpha7-nicotinic receptor for lung cancer treatment.
Am J Respir Crit Care Med. 179:1141–1150. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Medjber K, Freidja ML, Grelet S, Lorenzato
M, Maouche K, Nawrocki-Raby B, Birembaut P, Polette M and Tournier
JM: Role of nicotinic acetylcholine receptors in cell proliferation
and tumour invasion in broncho-pulmonary carcinomas. Lung Cancer.
87:258–264. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Russo P, Del Bufalo A, Milic M, Salinaro
G, Fini M and Cesario A: Cholinergic receptors as target for cancer
therapy in a systems medicine perspective. Curr Mol Med.
14:1126–1138. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Havel LS, Kline ER, Salgueiro AM and
Marcus AI: Vimentin regulates lung cancer cell adhesion through a
VAV2-Rac1 pathway to control focal adhesion kinase activity.
Oncogene. 34:1979–1990. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu CY, Lin HH, Tang MJ and Wang YK:
Vimentin contributes to epithelial-mesenchymal transition cancer
cell mechanics by mediating cytoskeletal organization and focal
adhesion maturation. Oncotarget. 6:15966–15983. 2015.PubMed/NCBI
|
15
|
Kanamoto A, Ninomiya I, Harada S, Tsukada
T, Okamoto K, Nakanuma S, Sakai S, Makino I, Kinoshita J, Hayashi
H, et al: Valproic acid inhibits irradiation-induced
epithelial-mesenchymal transition and stem cell-like
characteristics in esophageal squamous cell carcinoma. Int J Oncol.
49:1859–1869. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Satelli A and Li S: Vimentin in cancer and
its potential as a molecular target for cancer therapy. Cell Mol
Life Sci. 68:3033–3046. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lahat G, Zhu QS, Huang KL, Wang S,
Bolshakov S, Liu J, Torres K, Langley RR, Lazar AJ, Hung MC, et al:
Vimentin is a novel anti-cancer therapeutic target; insights from
in vitro and in vivo mice xenograft studies. PLoS One.
5:e101052010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tang JS, Xie BX, Bian XL, Xue Y, Wei NN,
Zhou JH, Hao YC, Li G, Zhang LR and Wang KW: Identification and in
vitro pharmacological characterization of a novel and selective α7
nicotinic acetylcholine receptor agonist, Br-IQ17B. Acta Pharmacol
Sin. 36:800–812. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Si ML, Long C, Chen MF and Lee TJ:
Estrogen prevents β-amyloid inhibition of sympathetic
α7-nAChR-mediated nitrergic neurogenic dilation in porcine basilar
arteries. Acta Physiol. 203:13–23. 2011. View Article : Google Scholar
|
20
|
Dasgupta P, Rastogi S, Pillai S, Orcarried
Outz-Ercan D, Morris M, Haura E and Chellappan S: Nicotine induces
cell proliferation by beta-arrestin-mediated activation of Src and
Rb-Raf-1 pathways. J Clin Invest. 116:2208–2217. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Paleari L, Trombino S, Falugi C, Gallus L,
Carlone S, Angelini C, Sepcic K, Turk T, Faimali M, Noonan DM, et
al: Marine sponge-derived polymeric alkylpyridinium salts as a
novel tumor chemotherapeutic targeting the cholinergic system in
lung tumors. Int J Oncol. 29:1381–1388. 2006.PubMed/NCBI
|
22
|
Sheppard BJ, Williams M, Plummer HK and
Schuller HM: Activation of voltage-operated
Ca2+-channels in human small cell lung carcinoma by the
tobacco-specific nitrosamine
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Int J Oncol.
16:513–518. 2000.PubMed/NCBI
|
23
|
Zhou Y, Liao Q, Han Y, Chen J, Liu Z, Ling
H, Zhang J, Yang W, Oyang L, Xia L, et al: Rac1 overexpression is
correlated with epithelial mesenchymal transition and predicts poor
prognosis in non-small cell lung cancer. J Cancer. 7:2100–2109.
2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lee CH, Wu CH and Ho YS: From smoking to
cancers: Novel targets to neuronal nicotinic acetylcholine
receptors. J Oncol. 2011:6934242011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Dasgupta P, Rizwani W, Pillai S, Kinkade
R, Kovacs M, Rastogi S, Banerjee S, Carless M, Kim E, Coppola D, et
al: Nicotine induces cell proliferation, invasion and
epithelial-mesenchymal transition in a variety of human cancer cell
lines. Int J Cancer. 124:36–45. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Boo HJ, Min HY, Jang HJ, Yun HJ, Smith JK,
Jin Q, Lee HJ, Liu D, Kweon HS, Behrens C, et al: The
tobacco-specific carcinogen-operated calcium channel promotes lung
tumorigenesis via IGF2 exocytosis in lung epithelial cells. Nat
Commun. 7:129612016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhao Y: The oncogenic functions of
nicotinic acetylcholine receptors. J Oncol. 2016:96504812016.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Cardinale A, Nastrucci C, Cesario A and
Russo P: Nicotine: Specific role in angiogenesis, proliferation and
apoptosis. Crit Rev Toxicol. 42:68–89. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Improgo MR, Soll LG, Tapper AR and Gardner
PD: Nicotinic acetylcholine receptors mediate lung cancer growth.
Front Physiol. 4:2512013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Maouche K, Polette M, Jolly T, Medjber K,
Cloëz-Tayarani I, Changeux JP, Burlet H, Terryn C, Coraux C, Zahm
JM, et al: {alpha}7 nicotinic acetylcholine receptor regulates
airway epithelium differentiation by controlling basal cell
proliferation. Am J Pathol. 175:1868–1882. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mendez MG, Kojima S and Goldman RD:
Vimentin induces changes in cell shape, motility, and adhesion
during the epithelial to mesenchymal transition. FASEB J.
24:1838–1851. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lanier MH, Kim T and Cooper JA: CARMIL2 is
a novel molecular connection between vimentin and actin essential
for cell migration and invadopodia formation. Mol Biol Cell.
26:4577–4588. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Vyas AR and Singh SV: Functional relevance
of D,L-sulforaphane-mediated induction of vimentin and plasminogen
activator inhibitor-1 in human prostate cancer cells. Eur J Nutr.
53:843–852. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Pérez-Sala D, Oeste CL, Martínez AE,
Carrasco MJ, Garzón B and Cañada FJ: Vimentin filament organization
and stress sensing depend on its single cysteine residue and zinc
binding. Nat Commun. 6:72872015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Schaal C and Chellappan SP:
Nicotine-mediated cell proliferation and tumor progression in
smoking-related cancers. Mol Cancer Res. 12:14–23. 2014. View Article : Google Scholar : PubMed/NCBI
|