Open Access

MicroRNA-133a acts as a tumour suppressor in breast cancer through targeting LASP1

Retraction in: /10.3892/or.2022.8330

  • Authors:
    • Yanmin Sui
    • Xiaolei Zhang
    • Honglan Yang
    • Wei Wei
    • Minglin Wang
  • View Affiliations

  • Published online on: November 27, 2017     https://doi.org/10.3892/or.2017.6114
  • Pages: 473-482
  • Copyright: © Sui et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Many microRNAs (miRs) have been demonstrated to play promoting or tumor suppressive roles in human cancers including breast cancer. However, the molecular mechanism of miR-133a underlying the malignant progression of breast cancer still remains obscure. In the present study we observed that the expression of miR-133a was significantly downregulated in breast cancer tissues and cell lines, when compared with adjacent non-tumor tissues and normal breast cell line, respectively. Reduced miR-133a levels were significantly associated with advanced clinical stage, lymph node metastasis, as well as shorter survival time of patients with breast cancer. Restoration of miR-133a expression led to significant decrease in the proliferation, migration, and invasion of SK-BR-3 and MDA-MB-231 cells in vitro, as well as in tumor xenograft growth in nude mice. Luciferase reporter gene assay data identified LASP1 as a target gene of miR-133a, and the expression of LASP1 was negatively regulated by miR-133a in breast cancer cells. LASP1 was significantly upregulated in breast cancer tissues and cell lines, and its upregulation was significantly associated with disease progression. siRNA-induced LASP1 downregulation caused a significant reduction in breast cancer cell proliferation, migration and invasion. Furthermore, overexpression of LASP1 impaired the suppressive effects of miR-133a upregulation on the proliferation, migration and invasion of SK-BR-3 and MDA-MB-231 cells. In summary, the present study demonstrates that miR-133a acts as a tumor suppressor in breast cancer partly at least via targeting LASP1, and thus suggests that the miR-133a/LASP1 axis may become a potential therapeutic target for breast cancer.
View Figures
View References

Related Articles

Journal Cover

February-2018
Volume 39 Issue 2

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Sui Y, Zhang X, Yang H, Wei W and Wang M: MicroRNA-133a acts as a tumour suppressor in breast cancer through targeting LASP1 Retraction in /10.3892/or.2022.8330. Oncol Rep 39: 473-482, 2018.
APA
Sui, Y., Zhang, X., Yang, H., Wei, W., & Wang, M. (2018). MicroRNA-133a acts as a tumour suppressor in breast cancer through targeting LASP1 Retraction in /10.3892/or.2022.8330. Oncology Reports, 39, 473-482. https://doi.org/10.3892/or.2017.6114
MLA
Sui, Y., Zhang, X., Yang, H., Wei, W., Wang, M."MicroRNA-133a acts as a tumour suppressor in breast cancer through targeting LASP1 Retraction in /10.3892/or.2022.8330". Oncology Reports 39.2 (2018): 473-482.
Chicago
Sui, Y., Zhang, X., Yang, H., Wei, W., Wang, M."MicroRNA-133a acts as a tumour suppressor in breast cancer through targeting LASP1 Retraction in /10.3892/or.2022.8330". Oncology Reports 39, no. 2 (2018): 473-482. https://doi.org/10.3892/or.2017.6114