1
|
Siegel RL, Miller KD and Jemal A: Cancer
Statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Mar N, Vredenburgh JJ and Wasser JS:
Targeting HER2 in the treatment of non-small cell lung cancer. Lung
Cancer. 87:220–225. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kazandjian D, Blumenthal GM, Chen HY, He
K, Patel M, Justice R, Keegan P and Pazdur R: FDA approval summary:
Crizotinib for the treatment of metastatic non-small cell lung
cancer with anaplastic lymphoma kinase rearrangements. Oncologist.
19:e5–e11. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kris MG, Johnson BE, Berry LD, Kwiatkowski
DJ, Iafrate AJ, Wistuba II, Varella-Garcia M, Franklin WA, Aronson
SL, Su PF, et al: Using multiplexed assays of oncogenic drivers in
lung cancers to select targeted drugs. JAMA. 311:1998–2006. 2014.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Rolfo C, Caglevic C, Santarpia M, Araujo
A, Giovannetti E, Gallardo CD, Pauwels P and Mahave M:
Immunotherapy in NSCLC: A Promising and revolutionary Weapon. Adv
Exp Med Biol. 995:97–125. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Multhaupt HA, Leitinger B, Gullberg D and
Couchman JR: Extracellular matrix component signaling in cancer.
Adv Drug Deliv Rev. 97:28–40. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
El-Nikhely N, Larzabal L, Seeger W, Calvo
A and Savai R: Tumor-stromal interactions in lung cancer: Novel
candidate targets for therapeutic intervention. Expert Opin
Investig Drugs. 21:1107–1122. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kataki A, Scheid P, Piet M, Marie B,
Martinet N, Martinet Y and Vignaud JM: Tumor infiltrating
lymphocytes and macrophages have a potential dual role in lung
cancer by supporting both host-defense and tumor progression. J Lab
Clin Med. 140:320–328. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Carus A, Ladekarl M, Hager H, Pilegaard H,
Nielsen PS and Donskov F: Tumor-associated neutrophils and
macrophages in non-small cell lung cancer: No immediate impact on
patient outcome. Lung Cancer. 81:130–137. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hsu YL, Hung JY, Ko YC, Hung CH, Huang MS
and Kuo PL: Phospholipase D signaling pathway is involved in lung
cancer-derived IL-8 increased osteoclastogenesis. Carcinogenesis.
31:587–596. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kuo PL, Huang MS, Hung JY, Chou SH, Chiang
SY, Huang YF, Yang CJ, Tsai MJ, Chang WA and Hsu YL: Synergistic
effect of lung tumor-associated dendritic cell-derived HB-EGF and
CXCL5 on cancer progression. Int J Cancer. 135:96–108. 2014.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Rivas-Fuentes S, Salgado-Aguayo A, Pertuz
Belloso S, Gorocica Rosete P, Alvarado-Vásquez N and Aquino-Jarquin
G: Role of chemokines in non-small cell lung cancer: Angiogenesis
and inflammation. J Cancer. 6:938–952. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
van Horssen R, Ten Hagen TL and Eggermont
AM: TNF-alpha in cancer treatment: Molecular insights, antitumor
effects, and clinical utility. Oncologist. 11:397–408. 2006.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Lebrec H, Ponce R, Preston BD, Iles J,
Born TL and Hooper M: Tumor necrosis factor, tumor necrosis factor
inhibition, and cancer risk. Curr Med Res Opin. 31:557–574. 2015.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Winkles JA: The TWEAK-Fn14
cytokine-receptor axis: Discovery, biology and therapeutic
targeting. Nat Rev Drug Discov. 7:411–425. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Willis AL, Tran NL, Chatigny JM, Charlton
N, Vu H, Brown SA, Black MA, McDonough WS, Fortin SP, Niska JR, et
al: The fibroblast growth factor-inducible 14 receptor is highly
expressed in HER2-positive breast tumors and regulates breast
cancer cell invasive capacity. Mol Cancer Res. 6:725–734. 2008.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Huang M, Narita S, Tsuchiya N, Ma Z,
Numakura K, Obara T, Tsuruta H, Saito M, Inoue T, Horikawa Y, et
al: Overexpression of Fn14 promotes androgen-independent prostate
cancer progression through MMP-9 and correlates with poor treatment
outcome. Carcinogenesis. 32:1589–1596. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kwon OH, Park SJ, Kang TW, Kim M, Kim JH,
Noh SM, Song KS, Yoo HS, Wang Y, Pocalyko D, et al: Elevated
fibroblast growth factor-inducible 14 expression promotes gastric
cancer growth via nuclear factor-kB and is associated with poor
patient outcome. Cancer Lett. 314:73–81. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tran NL, McDonough WS, Savitch BA, Fortin
SP, Winkles JA, Symons M, Nakada M, Cunliffe HE, Hostetter G,
Hoelzinger DB, et al: Increased fibroblast growth factor-inducible
14 expression levels promote glioma cell invasion via Rac1 and
nuclear factor-kappaB and correlate with poor patient outcome.
Cancer Res. 66:9535–9542. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cherry EM, Lee DW, Jung JU and Sitcheran
R: Tumor necrosis factor-like weak inducer of apoptosis (TWEAK)
promotes glioma cell invasion through induction of NF-κB-inducing
kinase (NIK) and noncanonical NF-κB signaling. Mol Cancer.
14:92015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Armstrong CL, Galisteo R, Brown SA and
Winkles JA: TWEAK activation of the non-canonical NF-κB signaling
pathway differentially regulates melanoma and prostate cancer cell
invasion. Oncotarget. 7:81474–81492. 2016.PubMed/NCBI
|
22
|
Yin XF, Luistro L, Zhong H, Smith M,
Nevins T, Schostack K, Hilton H, Lin TA, Truitt T, Biondi D, et al:
RG7212 Anti-TWEAK mAb inhibits tumor growth through Inhibition of
tumor cell proliferation and survival signaling and by enhancing
the host antitumor immune response. Clin Cancer Res. 19:5686–5698.
2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zou H, Wang D, Gan X, Jiang L, Chen C, Hu
L and Zhang Y: Low TWEAK expression is correlated to the
progression of squamous cervical carcinoma. Gynecol Oncol.
123:123–128. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cheng E, Whitsett TG, Tran NL and Winkles
JA: The TWEAK receptor Fn14 is an Src-inducible protein and a
positive regulator of Src-driven cell invasion. Mol Cancer Res.
13:575–583. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sun Y, Han Y, Wang X, Wang W, Wang X, Wen
M, Xia J, Xing H, Li X and Zhang Z: Correlation of EGFR Del 19 with
Fn14/JAK/STAT signaling molecules in non-small cell lung cancer.
Oncol Rep. 36:1030–1040. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Whitsett TG, Fortin Ensign SP, Dhruv HD,
Inge LJ, Kurywchak P, Wolf KK, LoBello J, Kingsley CB, Allen JW,
Weiss GJ and Tran NL: FN14 expression correlates with MET in NSCLC
and promotes MET-driven cell invasion. Clin Exp Metastasis.
31:613–623. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bhattacharjee A, Richards WG, Staunton J,
Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, et
al: Classification of human lung carcinomas by mRNA expression
profiling reveals distinct adenocarcinoma subclasses. Proc Natl
Acad Sci USA. 98:pp. 13790–13795. 2001; View Article : Google Scholar : PubMed/NCBI
|
28
|
Hou J, Aerts J, den Hamer B, van Ijcken W,
den Bakker M, Riegman P, van der Leest C, van der Spek P, Foekens
JA, Hoogsteden HC, et al: Gene expression-based classification of
non-small cell lung carcinomas and survival prediction. PLoS One.
5:e103122010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Landi MT, Dracheva T, Rotunno M, Figueroa
JD, Liu H, Dasgupta A, Mann FE, Fukuoka J, Hames M, Bergen AW, et
al: Gene expression signature of cigarette smoking and its role in
lung adenocarcinoma development and survival. PLoS One.
3:e16512008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Selamat SA, Chung BS, Girard L, Zhang W,
Zhang Y, Campan M, Siegmund KD, Koss MN, Hagen JA, Lam WL, et al:
Genome-scale analysis of DNA methylation in lung adenocarcinoma and
integration with mRNA expression. Genome Res. 22:1197–1211. 2012.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Su LJ, Chang CW, Wu YC, Chen KC, Lin CJ,
Liang SC, Lin CH, Whang-Peng J, Hsu SL, Chen CH, et al: Selection
of DDX5 as a novel internal control for Q-RT-PCR from microarray
data using a block bootstrap re-sampling scheme. BMC Genomics.
8:1402007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Barretina J, Caponigro G, Stransky N,
Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV,
Sonkin D, et al: The cancer cell line encyclopedia enables
predictive modelling of anticancer drug sensitivity. Nature.
483:603–607. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Győrffy B, Surowiak P, Budczies J and
Lanczky A: Online survival analysis software to assess the
prognostic value of biomarkers using transcriptomic data in
non-small-cell lung cancer. PLoS One. 8:e822412013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix
MJ, Wu R and Wu CW: Selection of invasive and metastatic
subpopulations from a human lung adenocarcinoma cell line. Am J
Respir Cell Mol Biol. 17:353–360. 1997. View Article : Google Scholar : PubMed/NCBI
|
35
|
WHO, . World cancer report 2014. Chapter
5.1. 2014
|
36
|
Lassen UN, Meulendijks D, Siu LL,
Karanikas V, Mau-Sorensen M, Schellens JH, Jonker DJ, Hansen AR,
Simcox ME, Schostack KJ, et al: A phase I monotherapy study of
RG7212, a first-in-class monoclonal antibody targeting TWEAK
signaling in patients with advanced cancers. Clin Cancer Res.
22:258–266. 2015. View Article : Google Scholar
|
37
|
Meulendijks D, Lassen UN, Siu LL, Huitema
AD, Karanikas V, Mau-Sorensen M, Jonker DJ, Hansen AR, Simcox ME,
Schostack KJ, et al: Exposure and tumor Fn14 expression as
determinants of pharmacodynamics of the anti-TWEAK monoclonal
antibody RG7212 in patients with Fn14-positive solid tumors. Clin
Cancer Res. 22:858–867. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gu L, Dai L, Cao C, Zhu J, Ding C, Xu HB,
Qiu L and Di W: Functional expression of TWEAK and the receptor
Fn14 in human malignant ovarian tumors: Possible implication for
ovarian tumor intervention. PLoS One. 8:e574362013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Aviles-Jurado FX, Terra X, Gomez D, Flores
JC, Raventós A, Maymó-Masip E, León X, Serrano-Gonzalvo V, Vendrell
J, Figuerola E and Chacón MR: Low blood levels of sTWEAK are
related to locoregional failure in head and neck cancer. Eur Arch
Otorhinolaryngol. 272:1733–1741. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Moreno JA, Muñoz-Garcia B, Martin-Ventura
JL, Madrigal-Matute J, Orbe J, Páramo JA, Ortega L, Egido J and
Blanco-Colio LM: The CD163-expressing macrophages recognize and
internalize TWEAK Potential consequences in atherosclerosis.
Atherosclerosis. 207:103–110. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Tang X: Tumor-associated macrophages as
potential diagnostic and prognostic biomarkers in breast cancer.
Cancer Lett. 332:3–10. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Bover LC, Cardó-Vila M, Kuniyasu A, Sun J,
Rangel R, Takeya M, Aggarwal BB, Arap W and Pasqualini R: A
previously unrecognized protein-protein interaction between TWEAK
and CD163: Potential biological implications. J Immunol.
178:8183–8194. 2007. View Article : Google Scholar : PubMed/NCBI
|