1
|
Chen J, McKay RM and Parada LF: Malignant
glioma: Lessons from genomics, mouse models, and stem cells. Cell.
149:36–47. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lau D, Magill ST and Aghi MK: Molecularly
targeted therapies for recurrent glioblastoma: Current and future
targets. Neurosurg Focus. 37:E152014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Clarke J, Penas C, Pastori C, Komotar RJ,
Bregy A, Shah AH, Wahlestedt C and Ayad NG: Epigenetic pathways and
glioblastoma treatment. Epigenetics. 8:785–795. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Codrici E, Enciu A-M, Popescu I-D, Mihai S
and Tanase C: Glioma stem cells and their microenvironments:
Providers of challenging therapeutic targets. Stem Cells Int.
2016:57284382016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen J, Li Y, Yu T-S, McKay RM, Burns DK,
Kernie SG and Parada LF: A restricted cell population propagates
glioblastoma growth after chemotherapy. Nature. 488:522–526. 2012.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Schonberg DL, Lubelski D, Miller TE and
Rich JN: Brain tumor stem cells: Molecular characteristics and
their impact on therapy. Mol Aspects Med. 39:82–101. 2014.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Peng F, Du Q, Peng C, Wang N, Tang H, Xie
X, Shen J and Chen J: A Review: The pharmacology of
isoliquiritigenin. Phytother Res. 29:969–977. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Weng CJ and Yen GC: Flavonoids, a
ubiquitous dietary phenolic subclass, exert extensive in vitro
anti-invasive and in vivo anti-metastatic activities. Cancer
Metastasis Rev. 31:323–351. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Jung SK, Lee M-H, Lim DY, Kim JE, Singh P,
Lee SY, Jeong CH, Lim TG, Chen H, Chi YI, et al: Isoliquiritigenin
induces apoptosis and inhibits xenograft tumor growth of human lung
cancer cells by targeting both wild type and L858R/T790M mutant
EGFR. J Biol Chem. 289:35839–35848. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lee SK, Park K-K, Kim KR, Kim H-J and
Chung W-Y: Isoliquiritigenin inhibits metastatic breast cancer
cell-induced receptor activator of nuclear factor kappa-B
ligand/osteoprotegerin ratio in human osteoblastic cells. J Cancer
Prev. 20:281–286. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wu CH, Chen HY, Wang CW, Shieh TM, Huang
TC, Lin LC, Wang KL and Hsia SM: Isoliquiritigenin induces
apoptosis and autophagy and inhibits endometrial cancer growth in
mice. Oncotarget. 7:73432–73447. 2016.PubMed/NCBI
|
12
|
Zhang X, Yeung ED, Wang J, Panzhinskiy EE,
Tong C, Li W and Li J: Isoliquiritigenin, a natural anti-oxidant,
selectively inhibits the proliferation of prostate cancer cells.
Clin Exp Pharmacol Physiol. 37:841–847. 2010.PubMed/NCBI
|
13
|
Zhou GS, Song LJ and Yang B:
Isoliquiritigenin inhibits proliferation and induces apoptosis of
U87 human glioma cells in vitro. Mol Med Rep. 7:531–536. 2013.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Platonova N, Lesma E, Basile A, Bignotto
M, Garavelli S, Palano MT, Moschini A, Neri A, Colombo M and
Chiaramonte R: Targeting Notch as a therapeutic approach for human
malignancies. Curr Pharm Des. 23:108–134. 2017.PubMed/NCBI
|
15
|
Majidinia M, Alizadeh E, Yousefi B,
Akbarzadeh M and Zarghami N: Downregulation of Notch signaling
pathway as an effective chemosensitizer for cancer treatment. Drug
Res (Stuttg). 66:571–579. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yahyanejad S, King H, Iglesias VS, Granton
PV, Barbeau LM, van Hoof SJ, Groot AJ, Habets R, Prickaerts J,
Chalmers AJ, et al: NOTCH blockade combined with radiation therapy
and temozolomide prolongs survival of orthotopic glioblastoma.
Oncotarget. 7:41251–41264. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lee CK, Son SH, Park KK, Park JH, Lim SS
and Chung WY: Isoliquiritigenin inhibits tumor growth and protects
the kidney and liver against chemotherapy-induced toxicity in a
mouse xenograft model of colon carcinoma. J Pharmacol Sci.
106:444–451. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Duan JJ, Qiu W, Xu SL, Wang B, Ye XZ, Ping
YF, Zhang X, Bian XW and Yu SC: Strategies for isolating and
enriching cancer stem cells: Well begun is half done. Stem Cells
Dev. 22:2221–2239. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wu B, Sun C, Feng F, Ge M and Xia L: Do
relevant markers of cancer stem cells CD133 and Nestin indicate a
poor prognosis in glioma patients? A systematic review and
meta-analysis. J Exp Clin Cancer Res. 34:442015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhao S, Chang H, Ma P, Gao G, Jin C, Zhao
X, Zhou W and Jin B: Inhibitory effect of DNA topoisomerase
inhibitor isoliquiritigenin on the growth of glioma cells. Int J
Clin Exp Pathol. 8:12577–12582. 2015.PubMed/NCBI
|
21
|
Wang N, Wang Z, Peng C, You J, Shen J, Han
S and Chen J: Dietary compound isoliquiritigenin targets GRP78 to
chemosensitize breast cancer stem cells via β-catenin/ABCG2
signaling. Carcinogenesis. 35:2544–2554. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang N, Wang Z, Wang Y, Xie X, Shen J,
Peng C, You J, Peng F, Tang H, Guan X, et al: Dietary compound
isoliquiritigenin prevents mammary carcinogenesis by inhibiting
breast cancer stem cells through WIF1 demethylation. Oncotarget.
6:9854–9876. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen H, Zhang B, Yuan X, Yao Y, Zhao H,
Sun X and Zheng Q: Isoliquiritigenin-induced effects on Nrf2
mediated antioxidant defence in the HL-60 cell monocytic
differentiation. Cell Biol Int. 37:1215–1224. 2013.PubMed/NCBI
|
24
|
Chen X, Zhang B, Yuan X, Yang F, Liu J,
Zhao H, Liu L, Wang Y, Wang Z and Zheng Q:
Isoliquiritigenin-induced differentiation in mouse melanoma B16F0
cell line. Oxid Med Cell Longev. 2012:5349342012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Venere M, Fine HA, Dirks PB and Rich JN:
Cancer stem cells in gliomas: Identifying and understanding the
apex cell in cancer's hierarchy. Glia. 59:1148–1154. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Singh SK, Clarke ID, Terasaki M, Bonn VE,
Hawkins C, Squire J and Dirks PB: Identification of a cancer stem
cell in human brain tumors. Cancer Res. 63:5821–5828.
2003.PubMed/NCBI
|
27
|
Guo J, Qiang M and Ludueña RF: The
distribution of β-tubulin isotypes in cultured neurons from
embryonic, newborn, and adult mouse brains. Brain Res. 1420:8–18.
2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Guo J, Walss-Bass C and Ludueña RF: The
beta isotypes of tubulin in neuronal differentiation. Cytoskeleton
(Hoboken). 67:431–441. 2010. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Gage FH and Temple S: Neural stem cells:
Generating and regenerating the brain. Neuron. 80:588–601. 2013.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Kim MY, Mo JS, Ann EJ, Yoon JH and Park
HS: Dual regulation of notch1 signaling pathway by adaptor protein
fe65. J Biol Chem. 287:4690–4701. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Purow BW, Haque RM, Noel MW, Su Q, Burdick
MJ, Lee J, Sundaresan T, Pastorino S, Park JK, Mikolaenko I, et al:
Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1,
is critical for glioma cell survival and proliferation. Cancer Res.
65:2353–2363. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fan X, Matsui W, Khaki L, Stearns D, Chun
J, Li YM and Eberhart CG: Notch pathway inhibition depletes
stem-like cells and blocks engraftment in embryonal brain tumors.
Cancer Res. 66:7445–7452. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yang Y, Bai L, Li X, Xiong J, Xu P, Guo C
and Xue M: Transport of active flavonoids, based on cytotoxicity
and lipophilicity: An evaluation using the blood-brain barrier cell
and Caco-2 cell models. Toxicol In Vitro. 28:388–396. 2014.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Faria A, Pestana D, Teixeira D, Azevedo J,
De Freitas V, Mateus N and Calhau C: Flavonoid transport across
RBE4 cells: A blood-brain barrier model. Cell Mol Biol Lett.
15:234–241. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Youdim KA, Qaiser MZ, Begley DJ,
Rice-Evans CA and Abbott NJ: Flavonoid permeability across an in
situ model of the blood-brain barrier. Free Radic Biol Med.
36:592–604. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Faria A, Meireles M, Fernandes I,
Santos-Buelga C, Gonzalez-Manzano S, Dueñas M, de Freitas V, Mateus
N and Calhau C: Flavonoid metabolites transport across a human BBB
model. Food Chem. 149:190–196. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Fonseca-Santos B, Gremião MP and Chorilli
M: Nanotechnology-based drug delivery systems for the treatment of
Alzheimer's disease. Int J Nanomedicine. 10:4981–5003. 2015.
View Article : Google Scholar : PubMed/NCBI
|