1
|
Xue J, Sharma V, Hsieh MH, Chawla A,
Murali R, Pandol SJ and Habtezion A: Alternatively activated
macrophages promote pancreatic fibrosis in chronic pancreatitis.
Nat Commun. 6:71582015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Staloch D, Gao X, Liu K, Xu M, Feng X,
Aronson JF, Falzon M, Greeley GH, Rastellini C, Chao C, et al:
Gremlin is a key pro-fibrogenic factor in chronic pancreatitis. J
Mol Med (Berl). 93:1085–1093. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tian L, Lu ZP, Cai BB, Zhao LT, Qian D, Xu
QC, Wu PF, Zhu Y, Zhang JJ, Du Q, et al: Activation of pancreatic
stellate cells involves an EMT-like process. Int J Oncol.
48:783–792. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mahadevan D and Von Hoff DD: Tumor-stroma
interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther.
6:1186–1197. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hamada S, Masamune A, Yoshida N, Takikawa
T and Shimosegawa T: IL-6/STAT3 plays a regulatory role in the
interaction between pancreatic stellate cells and cancer cells. Dig
Dis Sci. 61:1561–1571. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lin Z, Zheng LC, Zhang HJ, Tsang SW and
Bian ZX: Anti-fibrotic effects of phenolic compounds on pancreatic
stellate cells. BMC Complement Altern Med. 15:2592015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fitzner B, Walzel H, Sparmann G, Emmrich
J, Liebe S and Jaster R: Galectin-1 is an inductor of pancreatic
stellate cell activation. Cell Signal. 17:1240–1247. 2005.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Apte M, Pirola RC and Wilson JS:
Pancreatic stellate cell: Physiologic role, role in fibrosis and
cancer. Curr Opin Gastroenterol. 31:416–423. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xiao W, Jiang W, Shen J, Yin G, Fan Y, Wu
D, Qiu L, Yu G, Xing M, Hu G, et al: Retinoic acid ameliorates
pancreatic fibrosis and inhibits the activation of pancreatic
stellate cells in mice with experimental chronic pancreatitis via
suppressing the Wnt/β-catenin signaling pathway. PLoS One.
10:e01414622015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Incio J, Suboj P, Chin SM, Vardam-Kaur T,
Liu H, Hato T, Babykutty S, Chen I, Deshpande V, Jain RK, et al:
Metformin reduces desmoplasia in pancreatic cancer by reprogramming
stellate cells and tumor-associated macrophages. PLoS One.
10:e01413922015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Takikawa T, Masamune A, Hamada S, Nakano
E, Yoshida N and Shimosegawa T: miR-210 regulates the interaction
between pancreatic cancer cells and stellate cells. Biochem Biophys
Res Commun. 437:433–439. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tsang SW, Zhang HJ, Chen YG, Auyeung KK
and Bian ZX: Eruberin A, a natural flavanol glycoside, exerts
anti-fibrotic action on pancreatic stellate cells. Cell Physiol
Biochem. 36:2433–2446. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nakamura T, Ito T, Uchida M, Hijioka M,
Igarashi H, Oono T, Kato M, Nakamura K, Suzuki K, Jensen RT, et al:
PSCs and GLP-1R: Occurrence in normal pancreas, acute/chronic
pancreatitis and effect of their activation by a GLP-1R agonist.
Lab Invest. 94:63–78. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
He J, Sun X, Qian KQ, Liu X, Wang Z and
Chen Y: Protection of cerulein-induced pancreatic fibrosis by
pancreas-specific expression of Smad7. Biochim Biophys Acta.
1792:56–60. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gao X, Cao Y, Yang W, Duan C, Aronson JF,
Rastellini C, Chao C, Hellmich MR and Ko TC: BMP2 inhibits
TGF-β-induced pancreatic stellate cell activation and extracellular
matrix formation. Am J Physiol Gastrointest Liver Physiol.
304:G804–G813. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Fitzner B, Brock P, Nechutova H, Glass A,
Karopka T, Koczan D, Thiesen HJ, Sparmann G, Emmrich J, Liebe S, et
al: Inhibitory effects of interferon-gamma on activation of rat
pancreatic stellate cells are mediated by STAT1 and involve
down-regulation of CTGF expression. Cell Signal. 19:782–790. 2007.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Böhm K, Teich N, Hoffmeister A, Mössner J,
Keim V, Bödeker H and Gress TM: Transforming growth factor-beta-1
variants are not associated with chronic nonalcoholic pancreatitis.
Pancreatology. 5:75–80. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu J, Akanuma N, Liu C, Naji A, Halff GA,
Washburn WK, Sun L and Wang P: TGF-β1 promotes acinar to ductal
metaplasia of human pancreatic acinar cells. Sci Rep. 6:309042016.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Tan R, Liu X, Wang J, Lu P, Han Z, Tao J,
Yin C and Gu M: Alternations of galectin levels after renal
transplantation. Clin Biochem. 47:83–88. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Masamune A, Satoh M, Hirabayashi J, Kasai
K, Satoh K and Shimosegawa T: Galectin-1 induces chemokine
production and proliferation in pancreatic stellate cells. Am J
Physiol Gastrointest Liver Physiol. 290:G729–G736. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tang D, Yuan Z, Xue X, Lu Z, Zhang Y, Wang
H, Chen M, An Y, Wei J, Zhu Y, et al: High expression of Galectin-1
in pancreatic stellate cells plays a role in the development and
maintenance of an immunosuppressive microenvironment in pancreatic
cancer. Int J Cancer. 130:2337–2348. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Berberat PO, Friess H, Wang L, Zhu Z, Bley
T, Frigeri L, Zimmermann A and Büchler MW: Comparative analysis of
galectins in primary tumors and tumor metastasis in human
pancreatic cancer. J Histochem Cytochem. 49:539–549. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Mifková A, Kodet O, Szabo P, Kučera J,
Dvořánková B, André S, Koripelly G, Gabius HJ, Lehn JM and Smetana
K Jr: Synthetic polyamine BPA-C8 inhibits TGF-β1-mediated
conversion of human dermal fibroblast to myofibroblasts and
establishment of galectin-1-rich extracellular matrix in vitro.
ChemBioChem. 15:1465–1470. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tang D, Zhang J, Yuan Z, Gao J, Wang S, Ye
N, Li P, Gao S, Miao Y, Wang D, et al: Pancreatic satellite cells
derived galectin-1 increase the progression and less survival of
pancreatic ductal adenocarcinoma. PLoS One. 9:e904762014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Tang D, Gao J, Wang S, Yuan Z, Ye N, Chong
Y, Xu C, Jiang X, Li B, Yin W, et al: Apoptosis and anergy of T
cell induced by pancreatic stellate cells-derived galectin-1 in
pancreatic cancer. Tumour Biol. 36:5617–5626. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tang D, Gao J, Wang S, Ye N, Chong Y,
Huang Y, Wang J, Li B, Yin W and Wang D: Cancer-associated
fibroblasts promote angiogenesis in gastric cancer through
galectin-1 expression. Tumour Biol. 37:1889–1899. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Xue X, Lu Z, Tang D, Yao J, An Y, Wu J, Li
Q, Gao W, Xu Z, Qian Z, et al: Galectin-1 secreted by activated
stellate cells in pancreatic ductal adenocarcinoma stroma promotes
proliferation and invasion of pancreatic cancer cells: An in vitro
study on the microenvironment of pancreatic ductal adenocarcinoma.
Pancreas. 40:832–839. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Apte MV, Haber PS, Applegate TL, Norton
ID, McCaughan GW, Korsten MA, Pirola RC and Wilson JS: Periacinar
stellate shaped cells in rat pancreas: Identification, isolation,
and culture. Gut. 43:128–133. 1998. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ellenrieder V, Schneiderhan W, Bachem M
and Adler G: Fibrogenesis in the pancreas. Rocz Akad Med Bialymst.
49:40–46. 2004.PubMed/NCBI
|
30
|
Jaskiewicz K, Nalecz A, Rzepko R and
Sledzinski Z: Immunocytes and activated stellate cells in
pancreatic fibrogenesis. Pancreas. 26:239–242. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Menke A and Adler G: TGFbeta-induced
fibrogenesis of the pancreas. Int J Gastrointest Cancer. 31:41–46.
2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li L, Bimmler D, Graf R, Zhou S, Sun Z,
Chen J, Siech M and Bachem MG: PSP/reg inhibits cultured pancreatic
stellate cell and regulates MMP/ TIMP ratio. Eur J Clin Invest.
41:151–158. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Phillips PA, McCarroll JA, Park S, Wu MJ,
Pirola R, Korsten M, Wilson JS and Apte MV: Rat pancreatic stellate
cells secrete matrix metalloproteinases: Implications for
extracellular matrix turnover. Gut. 52:275–282. 2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Li L, Bachem MG, Zhou S, Sun Z, Chen J,
Siech M, Bimmler D and Graf R: Pancreatitis-associated protein
inhibits human pancreatic stellate cell MMP-1 and −2, TIMP-1 and −2
secretion and RECK expression. Pancreatology. 9:99–110. 2009.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Laping NJ: Therapeutic uses of smad
protein inhibitors: Selective inhibition of specific TGF-beta
activities. IDrugs. 2:907–914. 1999.PubMed/NCBI
|
36
|
Laping NJ, Everitt JI, Frazier KS, Burgert
M, Portis MJ, Cadacio C, Gold LI and Walker CL: Tumor-specific
efficacy of transforming growth factor-beta RI inhibition in Eker
rats. Clin Cancer Res. 13:3087–3099. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Erkan M, Reiser-Erkan C, Michalski CW,
Deucker S, Sauliunaite D, Streit S, Esposito I, Friess H and Kleeff
J: Cancer-stellate cell interactions perpetuate the
hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma.
Neoplasia. 11:497–508. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Suárez-Cuenca JA, Chagoya de Sánchez V,
Aranda-Fraustro A, Sánchez-Sevilla L, Martínez-Pérez L and
Hernández-Muñoz R: Partial hepatectomy-induced regeneration
accelerates reversion of liver fibrosis involving participation of
hepatic stellate cells. Exp Biol Med (Maywood). 233:827–839. 2008.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Wang L, Friess H, Zhu Z, Frigeri L,
Zimmermann A, Korc M, Berberat PO and Büchler MW: Galectin-1 and
galectin-3 in chronic pancreatitis. Lab Invest. 80:1233–1241. 2000.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Lim MJ, Ahn J, Yi JY, Kim MH, Son AR, Lee
SL, Lim DS, Kim SS, Kang MA, Han Y, et al: Induction of galectin-1
by TGF-β1 accelerates fibrosis through enhancing nuclear retention
of Smad2. Exp Cell Res. 326:125–135. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Gu LZ, Sun H and Chen JH: Histone
deacetylases 3 deletion restrains PM2.5-induced mice lung injury by
regulating NF-κB and TGF-β/Smad2/3 signaling pathways. Biomed
Pharmacother. 85:756–762. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Daroqui CM, Ilarregui JM, Rubinstein N,
Salatino M, Toscano MA, Vazquez P, Bakin A, Puricelli L, Bal de
Kier Joffé E and Rabinovich GA: Regulation of galectin-1 expression
by transforming growth factor beta1 in metastatic mammary
adenocarcinoma cells: Implications for tumor-immune escape. Cancer
Immunol Immunother. 56:491–499. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Lekstan A, Olakowski M, Jabłońska B,
Łabuzek K, Olakowska E, Filip I and Lampe P: Concentration of
gelatinases and their tissue inhibitors in pancreatic inflammatory
and neoplastic tumors and their influence on the early
postoperative course. Pol Przegl Chir. 85:65–72. 2013.PubMed/NCBI
|
44
|
Bramhall SR, Neoptolemos JP, Stamp GW and
Lemoine NR: Imbalance of expression of matrix metalloproteinases
(MMPs) and tissue inhibitors of the matrix metalloproteinases
(TIMPs) in human pancreatic carcinoma. J Pathol. 182:347–355. 1997.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Bendicho MT, Guedes JC, Silva NN, Santana
GO, dos Santos RR, Lyra AC, Lyra LG, Meyer R and Lemaire DC:
Polymorphism of cytokine genes (TGF-beta1, IFN-gamma, IL-6, IL-10,
and TNF-alpha) in patients with chronic pancreatitis. Pancreas.
30:333–336. 2005. View Article : Google Scholar : PubMed/NCBI
|
46
|
Shek FW, Benyon RC, Walker FM, McCrudden
PR, Pender SL, Williams EJ, Johnson PA, Johnson CD, Bateman AC,
Fine DR, et al: Expression of transforming growth factor-beta 1 by
pancreatic stellate cells and its implications for matrix secretion
and turnover in chronic pancreatitis. Am J Pathol. 160:1787–1798.
2002. View Article : Google Scholar : PubMed/NCBI
|