1
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Guiu S, Michiels S, André F, Cortes J,
Denkert C, Di Leo A, Hennessy BT, Sorlie T, Sotiriou C, Turner N,
et al: Molecular subclasses of breast cancer: How do we define
them? The IMPAKT 2012 working group statement. Ann Oncol.
23:2997–3006. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Parker JS, Mullins M, Cheang MC, Leung S,
Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, et al:
Supervised risk predictor of breast cancer based on intrinsic
subtypes. J Clin Oncol. 27:1160–1167. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lan KH, Lu CH and Yu D: Mechanisms of
trastuzumab resistance and their clinical implications. Ann N Y
Acad Sci. 1059:70–75. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Nahta R, Yu D, Hung MC, Hortobagyi GN and
Esteva FJ: Mechanisms of disease: Understanding resistance to
HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol.
3:269–280. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yu KD, Zhu R, Zhan M, Rodriguez AA, Yang
W, Wong S, Makris A, Lehmann BD, Chen X, Mayer I, et al:
Identification of prognosis-relevant subgroups in patients with
chemoresistant triple-negative breast cancer. Clin Cancer Res.
19:2723–2733. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lapidot T, Sirard C, Vormoor J, Murdoch B,
Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA and
Dick JE: A cell initiating human acute myeloid leukaemia after
transplantation into SCID mice. Nature. 367:645–648. 1994.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Ginestier C, Hur MH, Charafe-Jauffret E,
Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG,
Liu S, et al: ALDH1 is a marker of normal and malignant human
mammary stem cells and a predictor of poor clinical outcome. Cell
Stem Cell. 1:555–567. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Al-Hajj M, Wicha MS, Benito-Hernandez A,
Morrison SJ and Clarke MF: Prospective identification of
tumorigenic breast cancer cells. Proc Natl Acad Sci USA.
100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Korkaya H, Kim GI, Davis A, Malik F, Henry
NL, Ithimakin S, Quraishi AA, Tawakkol N, D'Angelo R, Paulson AK,
et al: Activation of an IL6 inflammatory loop mediates trastuzumab
resistance in HER2+ breast cancer by expanding the cancer stem cell
population. Mol Cell. 47:570–584. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhou BB, Zhang H, Damelin M, Geles KG,
Grindley JC and Dirks PB: Tumour-initiating cells: Challenges and
opportunities for anticancer drug discovery. Nat Rev Drug Dis.
8:806–823. 2009. View
Article : Google Scholar
|
12
|
Wicha MS: Targeting self-renewal, an
Achilles' heel of cancer stem cells. Nat Med. 20:14–15. 2014.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Warburg O: The Metabolism of Tumor.
Richard R. Smith; New York: 1931
|
15
|
Magda D, Lecane P, Prescott J, Thiemann P,
Ma X, Dranchak PK, Toleno DM, Ramaswamy K, Siegmund KD and Hacia
JG: mtDNA depletion confers specific gene expression profiles in
human cells grown in culture and in xenograft. BMC Genomics.
9:5212008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Morais R, Zinkewich-Péotti K, Parent M,
Wang H, Babai F and Zollinger M: Tumor-forming ability in athymic
nude mice of human cell lines devoid of mitochondrial DNA. Cancer
Res. 54:3889–3896. 1994.PubMed/NCBI
|
17
|
Cavalli LR, Varella-Garcia M and Liang BC:
Diminished tumorigenic phenotype after depletion of mitochondrial
DNA. Cell Growth Differ. 8:1189–1198. 1997.PubMed/NCBI
|
18
|
Weinberg F, Hamanaka R, Wheaton WW,
Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger
GR and Chandel NS: Mitochondrial metabolism and ROS generation are
essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA.
107:8788–8793. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tan AS, Baty JW, Dong LF, Bezawork-Geleta
A, Endaya B, Goodwin J, Bajzikova M, Kovarova J, Peterka M, Yan B,
et al: Mitochondrial genome acquisition restores respiratory
function and tumorigenic potential of cancer cells without
mitochondrial DNA. Cell Metab. 21:81–94. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Farnie G, Sotgia F and Lisanti MP: High
mitochondrial mass identifies a sub-population of stem-like cancer
cells that are chemo-resistant. Oncotarget. 6:30472–30486. 2015.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Yan B, Stantic M, Zobalova R,
Bezawork-Geleta A, Stapelberg M, Stursa J, Prokopova K, Dong L and
Neuzil J: Mitochondrially targeted vitamin E succinate efficiently
kills breast tumour-initiating cells in a complex II-dependent
manner. BMC Cancer. 15:4012015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pasdar EA, Smits M, Stapelberg M,
Bajzikova M, Stantic M, Goodwin J, Yan B, Stursa J, Kovarova J,
Sachaphibulkij K, et al: Characterisation of
mesothelioma-initiating cells and their susceptibility to
anti-cancer agents. PLoS One. 10:e01195492015. View Article : Google Scholar : PubMed/NCBI
|
23
|
LeBleu VS, O'Connell JT, Herrera Gonzalez
KN, Wikman H, Pantel K, Haigis MC, de Carvalho FM, Damascena A,
Chinen Domingos LT, Rocha RM, et al: PGC-1α mediates mitochondrial
biogenesis and oxidative phosphorylation in cancer cells to promote
metastasis. Nat Cell Biol. 16(992–1003): 1–15. 2014.
|
24
|
Moullan N, Mouchiroud L, Wang X, Ryu D,
Williams EG, Mottis A, Jovaisaite V, Frochaux MV, Quiros PM,
Deplancke B, et al: Tetracyclines disturb mitochondrial function
across eukaryotic models: A call for caution in biomedical
research. Cell Rep: S2211-1247(15)00180-1. 2015. View Article : Google Scholar
|
25
|
Lamb R, Ozsvari B, Lisanti CL, Tanowitz
HB, Howell A, Martinez-Outschoorn UE, Sotgia F and Lisanti MP:
Antibiotics that target mitochondria effectively eradicate cancer
stem cells, across multiple tumor types: Treating cancer like an
infectious disease. Oncotarget. 6:4569–4584. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lamb R, Fiorillo M, Chadwick A, Ozsvari B,
Reeves KJ, Smith DL, Clarke RB, Howell SJ, Cappello AR,
Martinez-Outschoorn UE, et al: Doxycycline down-regulates DNA-PK
and radiosensitizes tumor initiating cells: Implications for more
effective radiation therapy. Oncotarget. 6:14005–14025. 2015.
View Article : Google Scholar : PubMed/NCBI
|
27
|
De Francesco EM, Maggiolini M, Tanowitz
HB, Sotgia F and Lisanti MP: Targeting hypoxic cancer stem cells
(CSCs) with Doxycycline: Implications for optimizing
anti-angiogenic therapy. Oncotarget. 8:56126–56142. 2017.
View Article : Google Scholar : PubMed/NCBI
|
28
|
De Francesco EM, Bonuccelli G, Maggiolini
M, Sotgia F and Lisanti MP: Vitamin C and Doxycycline: A synthetic
lethal combination therapy targeting metabolic flexibility in
cancer stem cells (CSCs). Oncotarget. 8:67269–67286. 2017.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu
Y, Martin-Trevino R, Shang L, McDermott SP, Landis MD, et al:
Breast cancer stem cells transition between epithelial and
mesenchymal states reflective of their normal counterparts. Stem
Cell Reports. 2:78–91. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Brooks MD, Burness ML and Wicha MS:
Therapeutic implications of cellular heterogeneity and plasticity
in breast cancer. Cell Stem Cell. 17:260–271. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Burnett JP, Korkaya H, Ouzounova MD, Jiang
H, Conley SJ, Newman BW, Sun L, Connarn JN, Chen CS, Zhang N, et
al: Trastuzumab resistance induces EMT to transform
HER2+ PTEN− to a triple negative breast
cancer that requires unique treatment options. Sci Rep.
5:158212015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Dontu G, Abdallah WM, Foley JM, Jackson
KW, Clarke MF, Kawamura MJ and Wicha MS: In vitro propagation and
transcriptional profiling of human mammary stem/progenitor cells.
Genes Dev. 17:1253–1270. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Xu X, Chai S, Wang P, Zhang C, Yang Y,
Yang Y and Wang K: Aldehyde dehydrogenases and cancer stem cells.
Cancer Lett. 369:50–57. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ahler E, Sullivan WJ, Cass A, Braas D,
York AG, Bensinger SJ, Graeber TG and Christofk HR: Doxycycline
alters metabolism and proliferation of human cell lines. PLoS One.
8:e645612013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Samanta D, Gilkes DM, Chaturvedi P, Xiang
L and Semenza GL: Hypoxia-inducible factors are required for
chemotherapy resistance of breast cancer stem cells. Proc Natl Acad
Sci USA. 111:E5429–E5438. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan
A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The
epithelial-mesenchymal transition generates cells with properties
of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Liu S, Clouthier SG and Wicha MS: Role of
microRNAs in the regulation of breast cancer stem cells. J Mammary
Gland Biol Neoplasia. 17:15–21. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Murphy MP: How mitochondria produce
reactive oxygen species. Biochem J. 417:1–13. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Iriondo O, Rábano M, Domenici G,
Carlevaris O, López-Ruiz JA, Zabalza I, Berra E and Vivanco M:
Distinct breast cancer stem/progenitor cell populations require
either HIF1α or loss of PHD3 to expand under hypoxic conditions.
Oncotarget. 6:31721–31739. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Conley SJ, Gheordunescu E, Kakarala P,
Newman B, Korkaya H, Heath AN, Clouthier SG and Wicha MS:
Antiangiogenic agents increase breast cancer stem cells via the
generation of tumor hypoxia. Proc Natl Acad Sci USA. 109:2784–2789.
2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Gao N, Jiang BH, Leonard SS, Corum L,
Zhang Z, Roberts JR, Antonini J, Zheng JZ, Flynn DC, Castranova V
and Shi X: p38 signaling-mediated hypoxia-inducible factor 1alpha
and vascular endothelial growth factor induction by Cr(VI) in DU145
human prostate carcinoma cells. J Biol Chem. 277:45041–45048. 2002.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Kwon SJ, Song JJ and Lee YJ: Signal
pathway of hypoxia-inducible factor-1alpha phosphorylation and its
interaction with von Hippel-Lindau tumor suppressor protein during
ischemia in MiaPaCa-2 pancreatic cancer cells. Clin Cancer Res.
11:7607–7613. 2005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Xu M, Ren Z, Wang X, Comer A, Frank JA, Ke
ZJ, Huang Y, Zhang Z, Shi X, Wang S and Luo J: ErbB2 and p38gamma
MAPK mediate alcohol-induced increase in breast cancer stem cells
and metastasis. Mol Cancer. 15:522016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Xu M, Wang S, Ren Z, Frank JA, Yang XH,
Zhang Z, Ke ZJ, Shi X and Luo J: Chronic ethanol exposure enhances
the aggressiveness of breast cancer: The role of p38γ. Oncotarget.
7:3489–3505. 2016.PubMed/NCBI
|
45
|
Silvera D and Schneider RJ: Inflammatory
breast cancer cells are constitutively adapted to hypoxia. Cell
Cycle. 8:3091–3096. 2009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Wynn ML, Yates JA, Evans CR, Van
Wassenhove LD, Wu ZF, Bridges S, Bao L, Fournier C, Ashrafzadeh S,
Merrins MJ, et al: RhoC GTPase is a potent regulator of glutamine
metabolism and N-acetylaspartate production in inflammatory breast
cancer cells. J Biol Chem. 291:13715–13729. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ferreri AJ, Ponzoni M, Guidoboni M, Resti
AG, Politi LS, Cortelazzo S, Demeter J, Zallio F, Palmas A, Muti G,
et al: Bacteria-eradicating therapy with doxycycline in ocular
adnexal MALT lymphoma: A multicenter prospective trial. J Natl
Cancer Inst. 98:1375–1382. 2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Shen LC, Chen YK, Lin LM and Shaw SY:
Anti-invasion and anti-tumor growth effect of doxycycline treatment
for human oral squamous-cell carcinoma-in vitro and in vivo
studies. Oral Oncol. 46:178–184. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Duivenvoorden WC, Popović SV, Lhoták S,
Seidlitz E, Hirte HW, Tozer RG and Singh G: Doxycycline decreases
tumor burden in a bone metastasis model of human breast cancer.
Cancer Res. 62:1588–1591. 2002.PubMed/NCBI
|