1
|
Van Roosbroeck S, Hoeck S and Van Hal G:
Population-based screening for colorectal cancer using an
immunochemical faecal occult blood test: A comparison of two
invitation strategies. Cancer Epidemiol. 36:e317–e324. 2012.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Elias E, Mukherji D, Faraj W, Khalife M,
Dimassi H, Eloubeidi M, Hattoum H, Abou-Alfa GK, Saleh A and
Shamseddine A: Lymph-node ratio is an independent prognostic factor
in patients with stage III colorectal cancer: A retrospective study
from the Middle East. World J Surg Oncol. 10:632012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Deschoolmeester V, Baay M, Specenier P,
Lardon F and Vermorken JB: A review of the most promising
biomarkers in colorectal cancer: One step closer to targeted
therapy. Oncologist. 15:699–731. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jung KW, Won YJ, Kong HJ, Oh CM, Seo HG
and Lee JS: Cancer statistics in Korea: Incidence, mortality,
survival and prevalence in 2010. Cancer Res Treat. 45:1–14. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Jemal A, Siegel R, Xu J and Ward E: Cancer
statistics, 2010. CA Cancer J Clin. 60:277–300. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Michor F, Iwasa Y, Lengauer C and Nowak
MA: Dynamics of colorectal cancer. Semin Cancer Biol. 15:484–493.
2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Satram-Hoang S, Lee L, Yu S, Guduru SR,
Gunuganti AR, Reyes C and McKenna E: Comparative effectiveness of
chemotherapy in elderly patients with metastatic colorectal cancer.
J Gastrointest Cancer. 44:79–88. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Tol J and Punt CJ: Monoclonal antibodies
in the treatment of metastatic colorectal cancer: A review. Clin
Ther. 32:437–453. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang L, Chen X, Li W and Sheng Z:
Antiepidermal growth factor receptor monoclonal antibody improves
survival outcomes in the treatment of patients with metastatic
colorectal cancer. Anticancer Drugs. 23:155–160. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wilke HJ and Van Cutsem E: Current
treatments and future perspectives in colorectal and gastric
cancer. Ann Oncol. 14 Suppl 2:ii49–ii55. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chan KM, Wu TH, Cheng CH, Lee WC, Chiang
JM, Chen JS and Wang JY: Prognostic significance of the number of
tumors and aggressive surgical approach in colorectal cancer
hepatic metastasis. World J Surg Oncol. 12:1552014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Swiderska M, Choromanska B, Dabrowska E,
Konarzewska-Duchnowska E, Choromańska K, Szczurko G, Myśliwiec P,
Dadan J, Ladny JR and Zwierz K: The diagnostics of colorectal
cancer. Contemp Oncol. 18:1–6. 2014.
|
13
|
Feigelson HS, Zeng C, Pawloski PA, Onitilo
AA, Richards CS, Johnson MA, Kauffman TL, Webster J, Nyirenda C,
Alexander GL, et al: Does KRAS testing in metastatic
colorectal cancer impact overall survival? A comparative
effectiveness study in a population-based sample. PLoS One.
9:e949772014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Schee K, Lorenz S, Worren MM, Günther CC,
Holden M, Hovig E, Fodstad O, Meza-Zepeda LA and Flatmark K: Deep
sequencing the MicroRNA transcriptome in colorectal cancer. PLoS
One. 8:e661652013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Elledge SJ: Cell cycle checkpoints:
Preventing an identity crisis. Science. 274:1664–1672. 1996.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Rhind N and Russell P: Signaling pathways
that regulate cell division. Cold Spring Harb Perspect Biol.
4:pii:a0059422012. View Article : Google Scholar
|
17
|
Norbury C, Blow J and Nurse P: Regulatory
phosphorylation of the p34cdc2 protein kinase in vertebrates. EMBO
J. 10:3321–3329. 1991.PubMed/NCBI
|
18
|
Mueller PR, Coleman TR, Kumagai A and
Dunphy WG: Myt1: A membrane-associated inhibitory kinase that
phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science.
270:86–90. 1995. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu F, Stanton JJ, Wu Z and Piwnica-Worms
H: The human Myt1 kinase preferentially phosphorylates Cdc2 on
threonine 14 and localizes to the endoplasmic reticulum and Golgi
complex. Mol Cell Biol. 17:571–583. 1997. View Article : Google Scholar : PubMed/NCBI
|
20
|
Choi HS, Bode AM, Shim JH, Lee SY and Dong
Z: c-Jun N-terminal kinase 1 phosphorylates Myt1 to prevent
UVA-induced skin cancer. Mol Cell Biol. 29:2168–2180. 2009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Chow JP and Poon RY: The CDK1 inhibitory
kinase MYT1 in DNA damage checkpoint recovery. Oncogene.
32:4778–4788. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Toledo CM, Ding Y, Hoellerbauer P, Davis
RJ, Basom R, Girard EJ, Lee E, Corrin P, Hart T, Bolouri H, et al:
Genome-wide CRISPR-Cas9 screens reveal loss of redundancy between
PKMYT1 and WEE1 in glioblastoma stem-like cells. Cell Rep.
13:2425–2439. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Parker LL and Piwnica-Worms H:
Inactivation of the p34cdc2-cyclin B complex by the human WEE1
tyrosine kinase. Science. 257:1955–1957. 1992. View Article : Google Scholar : PubMed/NCBI
|
24
|
Watanabe N, Broome M and Hunter T:
Regulation of the human WEE1Hu CDK tyrosine 15-kinase during the
cell cycle. EMBO J. 14:1878–1891. 1995.PubMed/NCBI
|
25
|
Chambers AF, Groom AC and MacDonald IC:
Dissemination and growth of cancer cells in metastatic sites. Nat
Rev Cancer. 2:563–572. 2002. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Lee JJ and Lotze MT: Molecular basis of
metastasis. N Engl J Med. 360:1679–1680. 2009.PubMed/NCBI
|
27
|
Frisch SM, Schaller M and Cieply B:
Mechanisms that link the oncogenic epithelial-mesenchymal
transition to suppression of anoikis. J Cell Sci. 126:21–29. 2013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Huang RY, Chung VY and Thiery JP:
Targeting pathways contributing to epithelial-mesenchymal
transition (EMT) in epithelial ovarian cancer. Curr Drug Targets.
13:1649–1653. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Jordan NV, Johnson GL and Abell AN:
Tracking the intermediate stages of epithelial-mesenchymal
transition in epithelial stem cells and cancer. Cell Cycle.
10:2865–2873. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lee K and Nelson CM: New insights into the
regulation of epithelial-mesenchymal transition and tissue
fibrosis. Int Rev Cell Mol Biol. 294:171–221. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tam WL and Weinberg RA: The epigenetics of
epithelial-mesenchymal plasticity in cancer. Nat Med. 19:1438–1449.
2013. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Thiery JP and Sleeman JP: Complex networks
orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell
Biol. 7:131–142. 2006. View
Article : Google Scholar : PubMed/NCBI
|
33
|
Yang J and Weinberg RA:
Epithelial-mesenchymal transition: At the crossroads of development
and tumor metastasis. Dev Cell. 14:818–829. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lee JM, Dedhar S, Kalluri R and Thompson
EW: The epithelial-mesenchymal transition: New insights in
signaling, development, and disease. J Cell Biol. 172:973–981.
2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu L, Wu J, Wang S, Luo X, Du Y, Huang D,
Gu D and Zhang F: PKMYT1 promoted the growth and motility of
hepatocellular carcinoma cells by activating beta-catenin/TCF
signaling. Exp Cell Res. 358:209–216. 2017. View Article : Google Scholar : PubMed/NCBI
|