1
|
Pennathur A, Gibson MK, Jobe BA and
Luketich JD: Oesophageal carcinoma. Lancet. 381:400–412. 2013.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Xiao Z, Peng Z, Peng M, Yan W, Ouyang Y
and Zhu H: Flavonoids health benefits and their molecular
mechanism. Mini Rev Med Chem. 11:169–177. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Li ZG, Shimada Y, Sato F, Maeda M, Itami
A, Kaganoi J, Komoto I, Kawabe A and Imamura M: Inhibitory effects
of epigallocatechin-3-gallate on N-nitrosomethylbenzylamine-induced
esophageal tumorigenesis in F344 rats. Int J Oncol. 21:1275–1283.
2002.PubMed/NCBI
|
4
|
Kumar S and Pandey AK: Chemistry and
biological activities of flavonoids: An overview.
ScientificWorldJournal. 2013:1627502013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ye F, Zhang GH, Guan BX and Xu XC:
Suppression of esophageal cancer cell growth using curcumin,
(−)-epigallocatechin-3-gallate and lovastatin. World J
Gastroenterol. 18:126–135. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kim MJ, Kim DH, Na HK, Oh TY, Shin CY and
Surh Ph D Professor YJ: Eupatilin, a pharmacologically active
flavone derived from Artemisia plants, induces apoptosis in
human gastric cancer (AGS) cells. J Environ Pathol Toxicol Oncol.
24:261–269. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Seo HJ, Park KK, Han SS, Chung WY, Son MW,
Kim WB and Surh YJ: Inhibitory effects of the standardized extract
(DA-9601) of Artemisia asiatica Nakai on phorbol
ester-induced ornithine decarboxylase activity, papilloma
formation, cyclooxygenase-2 expression, inducible nitric oxide
synthase expression and nuclear transcription factor kappa B
activation in mouse skin. Int J Cancer. 100:456–462. 2002.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Min SW, Kim NJ, Baek NI and Kim DH:
Inhibitory effect of eupatilin and jaceosidin isolated from
Artemisia princeps on carrageenan-induced inflammation in
mice. J Ethnopharmacol. 125:497–500. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yun C, Jung Y, Chun W, Yang B, Ryu J, Lim
C, Kim JH, Kim H and Cho SI: Anti-inflammatory effects of
Artemisia leaf extract in mice with contact dermatitis in
vitro and in vivo. Mediators Inflamm. 2016:80275372016.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang Y, Hou H, Li M, Yang Y and Sun L:
Anticancer effect of eupatilin on glioma cells through inhibition
of the Notch-1 signaling pathway. Mol Med Rep. 13:1141–1146. 2016.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Steelman LS, Chappell WH, Abrams SL, Kempf
RC, Long J, Laidler P, Mijatovic S, Maksimovic-Ivanic D, Stivala F,
Mazzarino MC, et al: Roles of the Raf/MEK/ERK and
PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity
to therapy-implications for cancer and aging. Aging (Albany NY).
3:192–222. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sewing A, Wiseman B, Lloyd AC and Land H:
High-intensity Raf signal causes cell cycle arrest mediated by
p21Cip1. Mol Cell Biol. 17:5588–5597. 1997. View Article : Google Scholar : PubMed/NCBI
|
13
|
Woods D, Parry D, Cherwinski H, Bosch E,
Lees E and McMahon M: Raf-induced proliferation or cell cycle
arrest is determined by the level of Raf activity with arrest
mediated by p21Cip1. Mol Cell Biol. 17:5598–5611. 1997. View Article : Google Scholar : PubMed/NCBI
|
14
|
Knauf JA, Sartor MA, Medvedovic M,
Lundsmith E, Ryder M, Salzano M, Nikiforov YE, Giordano TJ,
Ghossein RA and Fagin JA: Progression of BRAF-induced thyroid
cancer is associated with epithelial-mesenchymal transition
requiring concomitant MAP kinase and TGFβ signaling. Oncogene.
30:3153–3162. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Clair T, Miller WR and Cho-Chung YS:
Prognostic significance of the expression of a ras protein with a
molecular weight of 21,000 by human breast cancer. Cancer Res.
47:5290–5293. 1987.PubMed/NCBI
|
16
|
Janes PW, Daly RJ, deFazio A and
Sutherland RL: Activation of the Ras signalling pathway in human
breast cancer cells overexpressing erbB-2. Oncogene. 9:3601–3608.
1994.PubMed/NCBI
|
17
|
Bos JL: Ras oncogenes in human cancer: A
review. Cancer Res. 49:4682–4689. 1989.PubMed/NCBI
|
18
|
Wee P and Wang Z: Epidermal growth factor
receptor cell proliferation signaling pathways. Cancers (Basel).
9:2017.PubMed/NCBI
|
19
|
Kaul R, Saha P, Saradhi M, Prasad RL,
Chatterjee S, Ghosh I, Tyagi RK and Datta K: Overexpression of
hyaluronan-binding protein 1 (HABP1/p32/gC1qR) in HepG2 cells leads
to increased hyaluronan synthesis and cell proliferation by
up-regulation of cyclin D1 in AKT-dependent pathway. J Biol Chem.
287:19750–19764. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lv C, Qin W, Zhu T, Wei S, Hong K, Zhu W,
Chen R and Huang C: Ophiobolin O isolated from Aspergillus
ustus induces G1 arrest of MCF-7 cells through interaction with
AKT/GSK3β/cyclin D1 signaling. Mar Drugs. 13:431–443. 2015.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang HY, Yang SL, Liang HF and Li CH: HBx
protein promotes oval cell proliferation by up-regulation of cyclin
D1 via activation of the MEK/ERK and PI3K/Akt pathways. Int J Mol
Sci. 15:3507–3518. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Thompson KN, Whipple RA, Yoon JR, Lipsky
M, Charpentier MS, Boggs AE, Chakrabarti KR, Bhandary L, Hessler
LK, Martin SS and Vitolo MI: The combinatorial activation of the
PI3K and Ras/MAPK pathways is sufficient for aggressive tumor
formation, while individual pathway activation supports cell
persistence. Oncotarget. 6:35231–35246. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bode AM and Dong Z: Signal transduction
and molecular targets of selected flavonoids. Antioxid Redox
Signal. 19:163–180. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li F, Tao Y, Qiao Y, Li K, Jiang Y, Cao C,
Ren S, Chang X, Wang X, Wang Y, et al: Eupatilin inhibits
EGF-induced JB6 cell transformation by targeting PI3K. Int J Oncol.
49:1148–1154. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhong WF, Wang XH, Pan B, Li F, Kuang L
and Su ZX: Eupatilin induces human renal cancer cell apoptosis via
ROS-mediated MAPK and PI3K/AKT signaling pathways. Oncol Lett.
12:2894–2899. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Blackhall FH, Pintilie M, Michael M,
Leighl N, Feld R, Tsao MS and Shepherd FA: Expression and
prognostic significance of kit, protein kinase B, and
mitogen-activated protein kinase in patients with small cell lung
cancer. Clin Cancer Res. 9:2241–2247. 2003.PubMed/NCBI
|
27
|
Huynh H, Nguyen TT, Chow KH, Tan PH, Soo
KC and Tran E: Over-expression of the mitogen-activated protein
kinase (MAPK) kinase (MEK)-MAPK in hepatocellular carcinoma: Its
role in tumor progression and apoptosis. BMC Gastroenterol.
3:192003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Guo Y, Shan Q, Gong Y, Lin J, Shi F, Shi R
and Yang X: Curcumin induces apoptosis via simultaneously targeting
AKT/mTOR and RAF/MEK/ERK survival signaling pathways in human
leukemia THP-1 cells. Pharmazie. 69:229–233. 2014.PubMed/NCBI
|
29
|
de Groot RP, Ballou LM and Sassone-Corsi
P: Positive regulation of the cAMP-responsive activator CREM by the
p70 S6 kinase: An alternative route to mitogen-induced gene
expression. Cell. 79:81–91. 1994. View Article : Google Scholar : PubMed/NCBI
|
30
|
Xing J, Ginty DD and Greenberg ME:
Coupling of the RAS-MAPK pathway to gene activation by RSK2, a
growth factor-regulated CREB kinase. Science. 273:959–963. 1996.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Tan Y, Rouse J, Zhang A, Cariati S, Cohen
P and Comb MJ: FGF and stress regulate CREB and ATF-1 via a pathway
involving p38 MAP kinase and MAPKAP kinase-2. EMBO J. 15:4629–4642.
1996.PubMed/NCBI
|
32
|
Fiol CJ, Williams JS, Chou CH, Wang QM,
Roach PJ and Andrisani OM: A secondary phosphorylation of CREB341
at Ser129 is required for the cAMP-mediated control of gene
expression. A role for glycogen synthase kinase-3 in the control of
gene expression. J Biol Chem. 23:32187–32193. 1994.
|
33
|
Wang Z, Iwasaki M, Ficara F, Lin C,
Matheny C, Wong SH, Smith KS and Cleary ML: GSK-3 promotes
conditional association of CREB and its coactivators with MEIS1 to
facilitate HOX-mediated transcription and oncogenesis. Cancer Cell.
17:597–608. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Horike N, Sakoda H, Kushiyama A, Ono H,
Fujishiro M, Kamata H, Nishiyama K, Uchijima Y, Kurihara Y,
Kurihara H and Asano T: AMP-activated protein kinase activation
increases phosphorylation of glycogen synthase kinase 3beta and
thereby reduces cAMP-responsive element transcriptional activity
and phosphoenolpyruvate carboxykinase C gene expression in the
liver. J Biol Chem. 283:33902–33910. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lin DC, Hao JJ, Nagata Y, Xu L, Shang L,
Meng X, Sato Y, Okuno Y, Varela AM, Ding LW, et al: Genomic and
molecular characterization of esophageal squamous cell carcinoma.
Nat Genet. 46:467–473. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Manning BD and Cantley LC: AKT/PKB
signaling: Navigating downstream. Cell. 129:1261–1274. 2007.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Cho JH, Lee JG, Yang YI, Kim JH, Ahn JH,
Baek NI, Lee KT and Choi JH: Eupatilin, a dietary flavonoid,
induces G2/M cell cycle arrest in human endometrial cancer cells.
Food Chem Toxicol. 49:1737–1744. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Li K and Li J: Current molecular targeted
therapy in advanced gastric cancer: A comprehensive review of
therapeutic mechanism, clinical trials, and practical application.
Gastroenterol Res Pract. 2016:41056152016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wang H, Xu T, Jiang Y, Xu H, Yan Y, Fu D
and Chen J: The challenges and the promise of molecular targeted
therapy in malignant gliomas. Neoplasia. 17:239–255. 2015.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Borlak J, Meier T, Halter R, Spanel R and
Spanel-Borowski K: Epidermal growth factor-induced hepatocellular
carcinoma: Gene expression profiles in precursor lesions, early
stage and solitary tumours. Oncogene. 24:1809–1819. 2005.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Adlung L, Kar S, Wagner MC, She B,
Chakraborty S, Bao J, Lattermann S, Boerries M, Busch H, Wuchter P,
et al: Protein abundance of AKT and ERK pathway components governs
cell type-specific regulation of proliferation. Mol Syst Biol.
13:9042017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Saez-Rodriguez J, MacNamara A and Cook S:
Modeling signaling networks to advance new cancer therapies. Annu
Rev Biomed Eng. 17:143–163. 2015. View Article : Google Scholar : PubMed/NCBI
|