1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wagner AD, Unverzagt S, Grothe W, Kleber
G, Grothey A, Haerting J and Fleig WE: Chemotherapy for advanced
gastric cancer. Cochrane Database Syst Rev: CD004064. 2010.
View Article : Google Scholar
|
3
|
Petrioli R, Francini E, Roviello F,
Marrelli D, Fiaschi AI, Laera L, Rossi G, Bianco V, Brozzetti S and
Roviello G: Sequential treatment with epirubicin, oxaliplatin and
5FU (EOF) followed by docetaxel, oxaliplatin and 5FU (DOF) in
patients with advanced gastric or gastroesophageal cancer: A
single-institution experience. Cancer Chemother Pharmacol.
75:941–947. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lordick F, Allum W, Carneiro F, Mitry E,
Tabernero J, Tan P, Van Cutsem E, van de Velde C and Cervantes A:
Unmet needs and challenges in gastric cancer: The way forward.
Cancer Treat Rev. 40:692–700. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Meulendijks D, Beerepoot LV, Boot H, de
Groot JW, Los M, Boers JE, Vanhoutvin SA, Polee MB, Beeker A,
Portielje JE, et al: Trastuzumab and bevacizumab combined with
docetaxel, oxaliplatin and capecitabine as first-line treatment of
advanced HER2-positive gastric cancer: A multicenter phase II
study. Invest New Drugs. 34:119–128. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
de Mello RA, Marques AM and Araujo A: HER2
therapies and gastric cancer: A step forward. World J
Gastroenterol. 19:6165–6169. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Janjigian YY, Werner D, Pauligk C,
Steinmetz K, Kelsen DP, Jäger E, Altmannsberger HM, Robinson E,
Tafe LJ, Tang LH, et al: Prognosis of metastatic gastric and
gastroesophageal junction cancer by HER2 status: A European and USA
international collaborative analysis. Ann Oncol. 23:2656–2662.
2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Fuchs CS, Tomasek J, Yong CJ, Dumitru F,
Passalacqua R, Goswami C, Safran H, Dos Santos LV, Aprile G, Ferry
DR, et al: Ramucirumab monotherapy for previously treated advanced
gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An
international, randomised, multicentre, placebo-controlled, phase 3
trial. Lancet. 383:31–39. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wilke H, Muro K, Van Cutsem E, Oh SC,
Bodoky G, Shimada Y, Hironaka S, Sugimoto N, Lipatov O, Kim TY, et
al: Ramucirumab plus paclitaxel versus placebo plus paclitaxel in
patients with previously treated advanced gastric or
gastro-oesophageal junction adenocarcinoma (RAINBOW): A
double-blind, randomised phase 3 trial. Lancet Oncol. 15:1224–1235.
2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Roviello G, Petrioli R, Marano L, Polom K,
Marrelli D, Perrella A and Roviello F: Angiogenesis inhibitors in
gastric and gastroesophageal junction cancer. Gastric Cancer.
19:31–41. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Cancer Genome Atlas Research Network, :
Comprehensive molecular characterization of gastric adenocarcinoma.
Nature. 513:202–209. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tian S, Quan H, Xie C, Guo H, Lü F, Xu Y,
Li J and Lou L: YN968D1 is a novel and selective inhibitor of
vascular endothelial growth factor receptor-2 tyrosine kinase with
potent activity in vitro and in vivo. Cancer Sci. 102:1374–1380.
2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wilhelm SM, Carter C, Tang L, Wilkie D,
McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, et al:
BAY 43–9006 exhibits broad spectrum oral antitumor activity and
targets the RAF/MEK/ERK pathway and receptor tyrosine kinases
involved in tumor progression and angiogenesis. Cancer Res.
64:7099–7109. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Geng R and Li J: Apatinib for the
treatment of gastric cancer. Expert Opin Pharmacother. 16:117–122.
2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lau LF and Nathans D: Identification of a
set of genes expressed during the G0/G1 transition of cultured
mouse cells. EMBO J. 4:3145–3151. 1985.PubMed/NCBI
|
16
|
Farooq A and Zhou MM: Structure and
regulation of MAPK phosphatases. Cell Signal. 16:769–779. 2004.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Kwak SP, Hakes DJ, Martell KJ and Dixon
JE: Isolation and characterization of a human dual specificity
protein-tyrosine phosphatase gene. J Biol Chem. 269:3596–3604.
1994.PubMed/NCBI
|
18
|
Tanoue T, Adachi M, Moriguchi T and
Nishida E: A conserved docking motif in MAP kinases common to
substrates, activators and regulators. Nat Cell Biol. 2:110–116.
2000. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Theodosiou A and Ashworth A: MAP kinase
phosphatases. Genome Biol. 3:Reviews30092002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Guan KL, Broyles SS and Dixon JE: A
Tyr/Ser protein phosphatase encoded by vaccinia virus. Nature.
350:359–362. 1991. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Alessi DR, Smythe C and Keyse SM: The
human CL100 gene encodes a Tyr/Thr-protein phosphatase which
potently and specifically inactivates MAP kinase and suppresses its
activation by oncogenic ras in Xenopus oocyte extracts. Oncogene.
8:2015–2020. 1993.PubMed/NCBI
|
22
|
Camps M, Nichols A and Arkinstall S: Dual
specificity phosphatases: A gene family for control of MAP kinase
function. FASEB J. 14:6–16. 2000. View Article : Google Scholar : PubMed/NCBI
|
23
|
Duff JL, Monia BP and Berk BC:
Mitogen-activated protein (MAP) kinase is regulated by the MAP
kinase phosphatase (MKP-1) in vascular smooth muscle cells. Effect
of actinomycin D and antisense oligonucleotides. J Biol Chem.
270:7161–7166. 1995. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chu Y, Solski PA, Khosravi-Far R, Der CJ
and Kelly K: The mitogen-activated protein kinase phosphatases
PAC1, MKP-1, and MKP-2 have unique substrate specificities and
reduced activity in vivo toward the ERK2 sevenmaker mutation. J
Biol Chem. 271:6497–6501. 1996. View Article : Google Scholar : PubMed/NCBI
|
25
|
Slack DN, Seternes OM, Gabrielsen M and
Keyse SM: Distinct binding determinants for ERK2/p38alpha and JNK
map kinases mediate catalytic activation and substrate selectivity
of map kinase phosphatase-1. J Biol Chem. 276:16491–16500. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Bang YJ, Kwon JH, Kang SH, Kim JW and Yang
YC: Increased MAPK activity and MKP-1 overexpression in human
gastric adenocarcinoma. Biochem Biophys Res Commun. 250:43–47.
1998. View Article : Google Scholar : PubMed/NCBI
|
27
|
Loda M, Capodieci P, Mishra R, Yao H,
Corless C, Grigioni W, Wang Y, Magi-Galluzzi C and Stork PJ:
Expression of mitogen-activated protein kinase phosphatase-1 in the
early phases of human epithelial carcinogenesis. Am J Pathol.
149:1553–1564. 1996.PubMed/NCBI
|
28
|
Manzano RG, Montuenga LM, Dayton M, Dent
P, Kinoshita I, Vicent S, Gardner GJ, Nguyen P, Choi YH, Trepel J,
et al: CL100 expression is down-regulated in advanced epithelial
ovarian cancer and its re-expression decreases its malignant
potential. Oncogene. 21:4435–4447. 2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Haagenson KK and Wu GS: The role of MAP
kinases and MAP kinase phosphatase-1 in resistance to breast cancer
treatment. Cancer Metastasis Rev. 29:143–149. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Shi YY, Small GW and Orlowski RZ:
Proteasome inhibitors induce a p38 mitogen-activated protein kinase
(MAPK)-dependent anti-apoptotic program involving MAPK
phosphatase-1 and Akt in models of breast cancer. Breast Cancer Res
Treat. 100:33–47. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang Z, Xu J, Zhou JY, Liu Y and Wu GS:
Mitogen-activated protein kinase phosphatase-1 is required for
cisplatin resistance. Cancer Res. 66:8870–8877. 2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chattopadhyay S, Machado-Pinilla R,
Manguan-Garcia C, Belda-Iniesta C, Moratilla C, Cejas P,
Fresno-Vara JA, de Castro-Carpeño J, Casado E, Nistal M, et al:
MKP1/CL100 controls tumor growth and sensitivity to cisplatin in
non-small-cell lung cancer. Oncogene. 25:3335–3345. 2006.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Wu JJ and Bennett AM: Essential role for
mitogen-activated protein (MAP) kinase phosphatase-1 in
stress-responsive MAP kinase and cell survival signaling. J Biol
Chem. 280:16461–16466. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Abrams MT, Robertson NM, Litwack G and
Wickstrom E: Evaluation of glucocorticoid sensitivity in 697 pre-B
acute lymphoblastic leukemia cells after overexpression or
silencing of MAP kinase phosphatase-1. J Cancer Res Clin Oncol.
131:347–354. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang J, Zhou JY and Wu GS: ERK-dependent
MKP-1-mediated cisplatin resistance in human ovarian cancer cells.
Cancer Res. 67:11933–11941. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang HY, Cheng Z and Malbon CC:
Overexpression of mitogen-activated protein kinase phosphatases
MKP1, MKP2 in human breast cancer. Cancer Lett. 191:229–237. 2003.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Small GW, Shi YY, Higgins LS and Orlowski
RZ: Mitogen-activated protein kinase phosphatase-1 is a mediator of
breast cancer chemoresistance. Cancer Res. 67:4459–4466. 2007.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang Z, Zhou JY, Kanakapalli D, Buck S, Wu
GS and Ravindranath Y: High level of mitogen-activated protein
kinase phosphatase-1 expression is associated with cisplatin
resistance in osteosarcoma. Pediatr Blood Cancer. 51:754–759. 2008.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Huang M, Zhang H, Liu T, Tian D, Gu L and
Zhou M: Triptolide inhibits MDM2 and induces apoptosis in acute
lymphoblastic leukemia cells through a p53-independent pathway. Mol
Cancer Ther. 12:184–194. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang W, Yang S, Su Y, Xiao Z, Wang C, Li
X, Lin L, Fenton BM, Paoni SF, Ding I, et al: Enhanced antitumor
effect of combined triptolide and ionizing radiation. Clin Cancer
Res. 13:4891–4899. 2007. View Article : Google Scholar : PubMed/NCBI
|
41
|
Mujumdar N, Mackenzie TN, Dudeja V, Chugh
R, Antonoff MB, Borja-Cacho D, Sangwan V, Dawra R, Vickers SM and
Saluja AK: Triptolide induces cell death in pancreatic cancer cells
by apoptotic and autophagic pathways. Gastroenterology.
139:598–608. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kitzen JJ, de Jonge MJ, Lamers CH, Eskens
FA, van der Biessen D, van Doorn L, Ter Steeg J, Brandely M, Puozzo
Ch and Verweij J: Phase I dose-escalation study of F60008, a novel
apoptosis inducer, in patients with advanced solid tumours. Eur J
Cancer. 45:1764–1772. 2009. View Article : Google Scholar : PubMed/NCBI
|
43
|
Koo HS, Kang SD, Lee JH, Kim NH, Chung HT
and Pae HO: Triptolide inhibits the proliferation of immortalized
ht22 hippocampal cells via persistent activation of extracellular
signal-regulated kinase-1/2 by down-regulating mitogen-activated
protein kinase phosphatase-1 expression. J Korean Neurosurg Soc.
46:389–396. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhu W, Ou Y, Li Y, Xiao R, Shu M, Zhou Y,
Xie J, He S, Qiu P and Yan G: A small-molecule triptolide
suppresses angiogenesis and invasion of human anaplastic thyroid
carcinoma cells via down-regulation of the nuclear factor-kappa B
pathway. Mol Pharmacol. 75:812–819. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Phillips PA, Dudeja V, McCarroll JA,
Borja-Cacho D, Dawra RK, Grizzle WE, Vickers SM and Saluja AK:
Triptolide induces pancreatic cancer cell death via inhibition of
heat shock protein 70. Cancer Res. 67:9407–9416. 2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
47
|
Yeo W, Chan SL, Mo FK, Chu CM, Hui JW,
Tong JH, Chan AW, Koh J, Hui EP, Loong H, et al: Phase I/II study
of temsirolimus for patients with unresectable hepatocellular
carcinoma (HCC)- a correlative study to explore potential
biomarkers for response. BMC Cancer. 15:3952015. View Article : Google Scholar : PubMed/NCBI
|
48
|
Denkert C, Schmitt WD, Berger S, Reles A,
Pest S, Siegert A, Lichtenegger W, Dietel M and Hauptmann S:
Expression of mitogen-activated protein kinase phosphatase-1
(MKP-1) in primary human ovarian carcinoma. Int J Cancer.
102:507–513. 2002. View Article : Google Scholar : PubMed/NCBI
|
49
|
Low HB and Zhang Y: Regulatory roles of
MAPK phosphatases in cancer. Immune Netw. 16:85–98. 2016.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Lin YC, Lin YC, Shih JY, Huang WJ, Chao
SW, Chang YL and Chen CC: DUSP1 expression induced by HDAC1
inhibition mediates gefitinib sensitivity in non-small cell lung
cancers. Clin Cancer Res. 21:428–438. 2015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Ma G, Pan Y, Zhou C, Sun R, Bai J, Liu P,
Ren Y and He J: Mitogen-activated protein kinase phosphatase 1 is
involved in tamoxifen resistance in MCF7 cells. Oncol Rep.
34:2423–2430. 2015. View Article : Google Scholar : PubMed/NCBI
|
52
|
Donaubauer EM, Law NC and Hunzicker-Dunn
ME: Follicle-stimulating hormone (FSH)-dependent regulation of
extracellular regulated kinase (ERK) phosphorylation by the
mitogen-activated protein (MAP) kinase phosphatase MKP3. J Biol
Chem. 291:19701–19712. 2016. View Article : Google Scholar : PubMed/NCBI
|
53
|
Boulding T, Wu F, McCuaig R, Dunn J,
Sutton CR, Hardy K, Tu W, Bullman A, Yip D, Dahlstrom JE and Rao S:
Differential roles for DUSP family members in
epithelial-to-mesenchymal transition and cancer stem cell
regulation in breast cancer. PLoS One. 11:e01480652016. View Article : Google Scholar : PubMed/NCBI
|
54
|
Xia HH, He H, De Wang J, Gu Q, Lin MC, Zou
B, Yu LF, Sun YW, Chan AO, Kung HF and Wong BC: Induction of
apoptosis and cell cycle arrest by a specific c-Jun NH2-terminal
kinase (JNK) inhibitor, SP-600125, in gastrointestinal cancers.
Cancer Lett. 241:268–274. 2006. View Article : Google Scholar : PubMed/NCBI
|
55
|
Owens DM and Keyse SM: Differential
regulation of MAP kinase signalling by dual-specificity protein
phosphatases. Oncogene. 26:3203–3213. 2007. View Article : Google Scholar : PubMed/NCBI
|
56
|
Krysan K, Reckamp KL, Dalwadi H, Sharma S,
Rozengurt E, Dohadwala M and Dubinett SM: Prostaglandin E2
activates mitogen-activated protein kinase/Erk pathway signaling
and cell proliferation in non-small cell lung cancer cells in an
epidermal growth factor receptor-independent manner. Cancer Res.
65:6275–6281. 2005. View Article : Google Scholar : PubMed/NCBI
|
57
|
Andradas C, Caffarel MM, Perez-Gomez E,
Salazar M, Lorente M, Velasco G, Guzmán M and Sánchez C: The orphan
G protein-coupled receptor GPR55 promotes cancer cell proliferation
via ERK. Oncogene. 30:245–252. 2011. View Article : Google Scholar : PubMed/NCBI
|
58
|
Kanai M, Konda Y, Nakajima T, Izumi Y,
Kanda N, Nanakin A, Kubohara Y and Chiba T:
Differentiation-inducing factor-1 (DIF-1) inhibits STAT3 activity
involved in gastric cancer cell proliferation via MEK-ERK-dependent
pathway. Oncogene. 22:548–554. 2003. View Article : Google Scholar : PubMed/NCBI
|
59
|
Tyagi N, Bhardwaj A, Singh AP, McClellan
S, Carter JE and Singh S: p-21 activated kinase 4 promotes
proliferation and survival of pancreatic cancer cells through AKT-
and ERK-dependent activation of NF-κB pathway. Oncotarget.
5:8778–8789. 2014. View Article : Google Scholar : PubMed/NCBI
|
60
|
Pulverer BJ, Kyriakis JM, Avruch J,
Nikolakaki E and Woodgett JR: Phosphorylation of c-jun mediated by
MAP kinases. Nature. 353:670–674. 1991. View Article : Google Scholar : PubMed/NCBI
|
61
|
Roviello G, Ravelli A, Fiaschi AI,
Cappelletti MR, Gobbi A, Senti C, Zanotti L, Polom K, Reynolds AR,
Fox SB, et al: Apatinib for the treatment of gastric cancer. Expert
Rev Gastroenterol Hepatol. 10:887–892. 2016.PubMed/NCBI
|
62
|
Yang Y, Wu N, Shen J, Teixido C, Sun X,
Lin Z, Qian X, Zou Z, Guan W, Yu L, et al: MET overexpression and
amplification define a distinct molecular subgroup for targeted
therapies in gastric cancer. Gastric Cancer. 19:778–788. 2016.
View Article : Google Scholar : PubMed/NCBI
|
63
|
Tran P, Nguyen C and Klempner SJ:
Targeting the phosphatidylinositol-3-kinase pathway in gastric
cancer: Can omics improve outcomes? Int Neurourol J. 20 Suppl
2:S131–S140. 2016. View Article : Google Scholar : PubMed/NCBI
|
64
|
Lee HS, Kim WH, Kwak Y, Koh J, Bae JM, Kim
KM, Chang MS, Han HS, Kim JM, Kim HW, et al: Molecular testing for
gastrointestinal cancer. J Pathol Transl Med. 51:103–121. 2017.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Candas D and Li JJ: MKP1 mediates
resistance to therapy in HER2-positive breast tumors. Mol Cell
Oncol. 2:e9975182015. View Article : Google Scholar : PubMed/NCBI
|
66
|
Kang YS, Seok HJ, Jeong EJ, Kim Y, Yun SJ,
Min JK, Kim SJ and Kim JS: DUSP1 induces paclitaxel resistance
through the regulation of p-glycoprotein expression in human
ovarian cancer cells. Biochem Biophys Res Commun. 478:403–409.
2016. View Article : Google Scholar : PubMed/NCBI
|
67
|
Liu F, Gore AJ, Wilson JL and Korc M:
DUSP1 is a novel target for enhancing pancreatic cancer cell
sensitivity to gemcitabine. PLoS One. 9:e849822014. View Article : Google Scholar : PubMed/NCBI
|
68
|
Boutros T, Chevet E and Metrakos P:
Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase
regulation: Roles in cell growth, death, and cancer. Pharmacol Rev.
60:261–310. 2008. View Article : Google Scholar : PubMed/NCBI
|
69
|
Keyse SM: Dual-specificity MAP kinase
phosphatases (MKPs) and cancer. Cancer Metastasis Rev. 27:253–261.
2008. View Article : Google Scholar : PubMed/NCBI
|
70
|
Sebolt-Leopold JS and Herrera R: Targeting
the mitogen-activated protein kinase cascade to treat cancer. Nat
Rev Cancer. 4:937–947. 2004. View Article : Google Scholar : PubMed/NCBI
|
71
|
Webb CP, Van Aelst L, Wigler MH and Vande
Woude GF: Signaling pathways in Ras-mediated tumorigenicity and
metastasis. Proc Natl Acad Sci USA. 95:8773–8778. 1998. View Article : Google Scholar : PubMed/NCBI
|
72
|
Xie CQ, Zhou P, Zuo J, Li X, Chen Y and
Chen JW: Triptolide exerts pro-apoptotic and cell cycle arrest
activity on drug-resistant human lung cancer A549/Taxol cells via
modulation of MAPK and PI3K/Akt signaling pathways. Oncol Lett.
12:3586–3590. 2016. View Article : Google Scholar : PubMed/NCBI
|