1
|
Jayson GC, Kohn EC, Kitchener HC and
Ledermann JM: Ovarian cancer. Lancet. 384:1376–1388. 2014.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Chiara S, Conte P, Franzone P, Orsatti M,
Bruzzone M, Rubagotti A, Odicino F, Rugiati S, Carnino F and Rosso
R: High-risk early-stage ovarian cancer. Randomized clinical trial
comparing cisplatin plus cyclophosphamide versus whole abdominal
radiotherapy. Am J Clin Oncol. 17:72–76. 1994. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hu L, McArthur C and Jaffe RB: Ovarian
cancer stem-like side-population cells are tumourigenic and
chemoresistant. Br J Cancer. 102:1276–1283. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Steg AD, Bevis KS, Katre AA, Ziebarth A,
Dobbin ZC, Alvarez RD, Zhang K, Conner M and Landen CN: Stem cell
pathways contribute to clinical chemoresistance in ovarian cancer.
Clin Cancer Res. 18:869–881. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Huang MY, Wang HM, Chang HJ, Hsiao CP,
Wang JY and Lin SR: Overexpression of S100B, TM4SF4, and OLFM4
genes is correlated with liver metastasis in Taiwanese colorectal
cancer patients. DNA Cell Biol. 31:43–49. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lin J, Yang Q, Wilder PT, Carrier F and
Weber DJ: The calcium-binding protein S100B down-regulates p53 and
apoptosis in malignant melanoma. J Biol Chem. 285:27487–27498.
2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hamberg AP, Korse CM, Bonfrer JM and de
Gast GC: Serum S100B is suitable for prediction and monitoring of
response to chemoimmunotherapy in metastatic malignant melanoma.
Melanoma Res. 13:45–49. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang T, Cheng J, Yang Y, Qi W, Zhao Y,
Long H, Xie R and Zhu B: S100B mediates stemness of ovarian cancer
stem-like cells through inhibiting p53. Stem Cells. 35:325–336.
2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lin J, Blake M, Tang C, Zimmer D, Rustandi
RR, Weber DJ and Carrier F: Inhibition of p53 transcriptional
activity by the S100B calcium-binding protein. J Biol Chem.
276:35037–35041. 2001. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lin J, Yang O, Yan Z, Markowitz J, Wilder
PT, Carrier F and Weber DJ: Inhibiting S100B restores p53 levels in
primary malignant melanoma cancer cells. J Biol Chem.
279:34071–34077. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Buttitta F, Marchetti A, Gadducci A,
Pellegrini S, Morganti M, Carnicelli V, Cosio S, Gagetti O,
Genazzani AR and Bevilacqua G: p53 alterations are predictive of
chemoresistance and aggressiveness in ovarian carcinomas: A
molecular and immunohistochemical study. Br J Cancer. 75:230–235.
1997. View Article : Google Scholar : PubMed/NCBI
|
12
|
Fraser M, Leung BM, Yan X, Dan HC, Cheng
JQ and Tsang BK: p53 is a determinant of X-linked inhibitor of
apoptosis protein/Akt-mediated chemoresistance in human ovarian
cancer cells. Cancer Res. 63:7081–7088. 2003.PubMed/NCBI
|
13
|
Xiang T, Long H, He L, Han X, Lin K, Liang
Z, Zhuo W, Xie R and Zhu B: Interleukin-17 produced by tumor
microenvironment promotes self-renewal of CD133+ cancer
stem-like cells in ovarian cancer. Oncogene. 34:165–176. 2015.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Koti M, Gooding RJ, Nuin P, Haslehurst A,
Crane C, Weberpals J, Childs T, Bryson P, Dharsee M, Evans K, et
al: Identification of the IGF1/PI3K/NFκB/ERK gene signalling
networks associated with chemotherapy resistance and treatment
response in high-grade serous epithelial ovarian cancer. BMC
Cancer. 13:5492013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Crijns AP, Fehrmann RS, de Jong S, Gerbens
F, Meersma GJ, Klip HG, Hollema H, Hofstra RM, te Meerman GJ, de
Vries EG and van der Zee AG: Survival-related profile, pathways,
and transcription factors in ovarian cancer. PLoS Med. 6:e242009.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Konstantinopoulos PA, Spentzos D, Karlan
BY, Taniguchi T, Fountzilas E, Francoeur N, Levine DA and Cannistra
SA: Gene expression profile of BRCAness that correlates with
responsiveness to chemotherapy and with outcome in patients with
epithelial ovarian cancer. J Clin Oncol. 28:3555–3561. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Long H, Xie R, Xiang T, Zhao Z, Lin S,
Liang Z, Chen Z and Zhu B: Autocrine CCL5 signaling promotes
invasion and migration of CD133+ ovarian cancer
stem-like cells via NF-κB-mediated MMP-9 upregulation. Stem Cells.
30:2309–2319. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Vaughan S, Coward JI, Bast RC Jr, Berchuck
A, Berek JS, Brenton JD, Coukos G, Crum CC, Drapkin R,
Etemadmoghadam D, et al: Rethinking ovarian cancer: Recommendations
for improving outcomes. Nat Rev Cancer. 11:719–725. 2011.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Konecny GE, Wang C, Hamidi H, Winterhoff
B, Kalli KR, Dering J, Ginther C, Chen HW, Dowdy S, Cliby W, et al:
Prognostic and therapeutic relevance of molecular subtypes in
high-grade serous ovarian cancer. J Natl Cancer Inst. 106:2492014.
View Article : Google Scholar
|
21
|
Weiner-Gorzel K, Dempsey E, Milewska M,
McGoldrick A, Toh V, Walsh A, Lindsay S, Gubbins L, Cannon A,
Sharpe D, et al: Overexpression of the microRNA miR-433 promotes
resistance to paclitaxel through the induction of cellular
senescence in ovarian cancer cells. Cancer Med. 4:745–758. 2015.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang W, Kryczek I, Dostál L, Lin H, Tan L,
Zhao L, Lu F, Wei S, Maj T, Peng D, et al: Effector t cells
abrogate stroma-mediated chemoresistance in ovarian Cancer. Cell.
165:1–1105. 2016. View Article : Google Scholar
|
23
|
Reinartz S, Finkernagel F, Adhikary T,
Rohnalter V, Schumann T, Schober Y, Nockher WA, Nist A, Stiewe T,
Jansen JM, et al: A transcriptome-based global map of signaling
pathways in the ovarian cancer microenvironment associated with
clinical outcome. Genome Biol. 17:1082016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yu H, Lee H, Herrmann A, Buettner R and
Jove R: Revisiting STAT3 signalling in cancer: New and unexpected
biological functions. Nat Rev Cancer. 14:736–746. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Guo RX, Qiao YH, Zhou Y, Li LX, Shi HR and
Chen KS: Increased staining for phosphorylated AKT and nuclear
factor-kappaB p65 and their relationship with prognosis in
epithelial ovarian cancer. Pathol Int. 58:749–756. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Darb-Esfahani S, Sinn BV, Weichert W,
Budczies J, Lehmann A, Noske A, Buckendahl AC, Muller BM, Sehouli
J, Koensgen D, et al: Expression of classical NF-kappaB pathway
effectors in human ovarian carcinoma. Histopathology. 56:727–739.
2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Godwin P, Baird AM, Heavey S, Barr MP,
O'Byrne KJ and Gately K: Targeting nuclear factor-kappa B to
overcome resistance to chemotherapy. Front Oncol. 3:1202013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Abdullah LN and Chow EK: Mechanisms of
chemoresistance in cancer stem cells. Clin Transl Med. 2:32013.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Alvero AB, Chen R, Fu HH, Montagna M,
Schwartz PE, Rutherford T, Silasi DA, Steffensen KD, Waldstrom M,
Visintin I and Mor G: Molecular phenotyping of human ovarian cancer
stem cells unravels the mechanisms for repair and chemoresistance.
Cell Cycle. 8:158–166. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jiang W, Jia Q, Liu L, Zhao X, Tan A, Ma N
and Zhang H: S100B promotes the proliferation, migration and
invasion of specific brain metastatic lung adenocarcinoma cell
line. Cell Biochem Funct. 29:582–588. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hwang CC, Chai HT, Chen HW, Tsai HL, Lu
CY, Yu FJ, Huang MY and Wang JY: S100B protein expressions as an
independent predictor of early relapse in UICC stages II and III
colon cancer patients after curative resection. Ann Surg Oncol.
18:139–145. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Laios A, O'Toole SA, Flavin R, Martin C,
Ring M, Gleeson N, D'Arcy T, McGuinness EP, Sheils O, Sheppard BL
and O' Leary JJ: An integrative model for recurrence in ovarian
cancer. Mol Cancer. 7:82008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Villarreal A, Aviles Reyes RX, Angelo MF,
Reines AG and Ramos AJ: S100B alters neuronal survival and dendrite
extension via RAGE-mediated NF-kappaB signaling. J Neurochem.
117:321–332. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bush JA and Li G: Cancer chemoresistance:
The relationship between p53 and multidrug transporters. Int J
Cancer. 98:323–330. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Masciarelli S, Fontemaggi G, Di Agostino
S, Donzelli S, Carcarino E, Strano S and Blandino G:
Gain-of-function mutant p53 downregulates miR-223 contributing to
chemoresistance of cultured tumor cells. Oncogene. 33:1601–1608.
2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Tsai CM, Chang KT, Wu LH, Chen JY, Gazdar
AF, Mitsudomi T, Chen MH and Perng RP: Correlations between
intrinsic chemoresistance and HER-2/neu gene expression, p53 gene
mutations, and cell proliferation characteristics in non-small cell
lung cancer cell lines. Cancer Res. 56:206–209. 1996.PubMed/NCBI
|
37
|
Laframboise S, Chapman W, McLaughlin J and
Andrulis IL: p53 mutations in epithelial ovarian cancers: Possible
role in predicting chemoresistance. Cancer J. 6:302–308.
2000.PubMed/NCBI
|
38
|
Kawasaki M, Nakanishi Y, Kuwano K,
Yatsunami J, Takayama K and Hara N: The utility of p53
immunostaining of transbronchial biopsy specimens of lung cancer:
p53 overexpression predicts poor prognosis and chemoresistance in
advanced non-small cell lung cancer. Clin Cancer Res. 3:1195–1200.
1997.PubMed/NCBI
|
39
|
Thottassery JV, Zambetti GP, Arimori K,
Schuetz EG and Schuetz JD: p53-dependent regulation of MDR1 gene
expression causes selective resistance to chemotherapeutic agents.
Proc Natl Acad Sci USA. 94:11037–11042. 1997. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bahr O, Wick W and Weller M: Modulation of
MDR/MRP by wild-type and mutant p53. J Clin Invest. 107:643–646.
2001. View Article : Google Scholar : PubMed/NCBI
|
41
|
Domcke S, Sinha R, Levine DA, Sander C and
Schultz N: Evaluating cell lines as tumour models by comparison of
genomic profiles. Nat Commun. 4:21262013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hartman KG, Vitolo MI, Pierce AD, Fox JM,
Shapiro P, Martin SS, Wilder PT and Weber DJ: Complex formation
between S100B protein and the p90 ribosomal S6 kinase (RSK) in
malignant melanoma is calcium-dependent and inhibits extracellular
signal-regulated kinase (ERK)-mediated phosphorylation of RSK. J
Biol Chem. 289:12886–12895. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Markowitz J, MacKerell AD Jr and Weber DJ:
A search for inhibitors of S100B, a member of the S100 family of
calcium-binding proteins. Mini Rev Med Chem. 7:609–616. 2007.
View Article : Google Scholar : PubMed/NCBI
|