1
|
Eckel-Passow JE, Lachance DH, Molinaro AM,
Walsh KM, Decker PA, Sicotte H, Pekmezci M, Rice T, Kosel ML,
Smirnov IV, et al: Glioma Groups Based on 1p/19q, IDH, and TERT
Promoter Mutations in Tumors. N Engl J Med. 372:2499–2508. 2015.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Omuro A and DeAngelis LM: Glioblastoma and
other malignant gliomas: A clinical review. JAMA. 310:1842–1850.
2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Pesenti C, Paganini L, Fontana L, Veniani
E, Runza L, Ferrero S, Bosari S, Menghi M, Marfia G, Caroli M, et
al: Mass spectrometry-based assay for the molecular diagnosis of
glioma: Concomitant detection of chromosome 1p/19q codeletion, and
IDH1, IDH2, and TERT mutation status. Oncotarget. 8:57134–57148.
2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Karsy M, Guan J, Cohen AL, Jensen RL and
Colman H: New molecular considerations for glioma: IDH, ATRX, BRAF,
TERT, H3 K27M. Curr Neurol Neurosci Rep. 17:192017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Holland EC: Progenitor cells and glioma
formation. Curr Opin Neurol. 14:683–688. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tang W, Wang X, Chen Y, Zhang J, Chen Y
and Lin Z: CXCL12 and CXCR4 as predictive biomarkers of glioma
recurrence pattern after total resection. Pathol Biol (Paris).
63:190–198. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sun L, Song L, Wan Q, Wu G, Li X, Wang Y,
Wang J, Liu Z, Zhong X, He X, et al: cMyc-mediated activation of
serine biosynthesis pathway is critical for cancer progression
under nutrient deprivation conditions. Cell Res. 25:429–444. 2015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Adams S, Teo C, McDonald KL, Zinger A,
Bustamante S, Lim CK, Sundaram G, Braidy N, Brew BJ and Guillemin
GJ: Involvement of the kynurenine pathway in human glioma
pathophysiology. PLoS One. 9:e1129452014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sauter M, Moffatt B, Saechao MC, Hell R
and Wirtz M: Methionine salvage and S-adenosylmethionine: Essential
links between sulfur, ethylene and polyamine biosynthesis. Biochem
J. 451:145–154. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Barth A, Bilkei-Gorzo A, Drews E, Otte DM,
Diaz-Lacava A, Varadarajulu J, Turck CW, Wienker TF and Zimmer A:
Analysis of quantitative trait loci in mice suggests a role of
Enoph1 in stress reactivity. J Neurochem. 128:807–817. 2014.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Morita K, Lee MS, Her S and Nishibori N:
Polyamines cause elevation of steroid 5α-reductase mRNA levels by
suppressing mRNA degradation in C6 glioma cells. Cell Biol Int.
38:1132–1137. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Elworthy P and Hitchcock E: Red blood cell
polyamines as a diagnostic indicator of glioma presence and
recurrence. J Neurooncol. 7:31–38. 1989. View Article : Google Scholar : PubMed/NCBI
|
13
|
Redgate ES, Boggs S, Grudziak A and
Deutsch M: Polyamines in brain tumor therapy. J Neurooncol.
25:167–179. 1995. View Article : Google Scholar : PubMed/NCBI
|
14
|
Takano K, Ogura M, Nakamura Y and Yoneda
Y: Neuronal and glial responses to polyamines in the ischemic
brain. Curr Neurovasc Res. 2:213–223. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li J, Doyle KM and Tatlisumak T:
Polyamines in the brain: Distribution, biological interactions, and
their potential therapeutic role in brain ischaemia. Curr Med Chem.
14:1807–1813. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Duan B, Wang YZ, Yang T, Chu XP, Yu Y,
Huang Y, Cao H, Hansen J, Simon RP, Zhu MX, et al: Extracellular
spermine exacerbates ischemic neuronal injury through sensitization
of ASIC1a channels to extracellular acidosis. J Neurosci.
31:2101–2112. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kim GH, Komotar RJ, McCullough-Hicks ME,
Otten ML, Starke RM, Kellner CP, Garrett MC, Merkow MB, Rynkowski
M, Dash KA, et al: The role of polyamine metabolism in neuronal
injury following cerebral ischemia. Can J Neurol Sci. 36:14–19.
2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Louis DN, Ohgaki H, Wiestler OD, Cavenee
WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007
WHO classification of tumours of the central nervous system. Acta
Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang Y, Zeng Y, Wang M, Tian C, Ma X,
Chen H, Fang Q, Jia L, Du J and Li H: Cardiac-specific
overexpression of E3 ligase Nrdp1 increases ischemia and
reperfusion-induced cardiac injury. Basic Res Cardiol. 106:371–383.
2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang Y, Wang T, Yang K, Xu J, Ren L, Li W
and Liu W: Cerebral Microvascular Endothelial Cell Apoptosis after
ischemia: Role of enolase-phosphatase 1 activation and
aci-reductone dioxygenase 1 translocation. Front Mol Neurosci.
9:792016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Uekita T, Gotoh I, Kinoshita T, Itoh Y,
Sato H, Shiomi T, Okada Y and Seiki M: Membrane-type 1 matrix
metalloproteinase cytoplasmic tail-binding protein-1 is a new
member of the Cupin superfamily. A possible multifunctional protein
acting as an invasion suppressor down-regulated in tumors. J Biol
Chem. 279:12734–12743. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chang ML, Huang YH, Cheng JC and Yeh CT:
Interaction between hepatic membrane type 1 matrix
metalloproteinase and acireductone dioxygenase 1 regulates
hepatitis C virus infection. J Viral Hepat. 23:256–266. 2016.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen S, Han M, Chen W, He Y, Huang B, Zhao
P, Huang Q, Gao L, Qu X and Li X: KIF1B promotes glioma migration
and invasion via cell surface localization of MT1-MMP. Oncol Rep.
35:971–977. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mou L, Kang Y, Zhou Y, Zeng Q, Song H and
Wang R: Neurokinin-1 receptor directly mediates glioma cell
migration by up-regulation of matrix metalloproteinase-2 (MMP-2)
and membrane type 1-matrix metalloproteinase (MT1-MMP). J Biol
Chem. 288:306–318. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ernestus RI, Röhn G, Schröder R, Els T,
Klekner A, Paschen W and Klug N: Polyamine metabolism in brain
tumours: Diagnostic relevance of quantitative biochemistry. J
Neurol Neurosurg Psychiatry. 71:88–92. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hoelzinger DB, Nakada M, Demuth T,
Rosensteel T, Reavie LB and Berens ME: Autotaxin: A secreted
autocrine/paracrine factor that promotes glioma invasion. J
Neurooncol. 86:297–309. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Komlósi K, Duga B, Hadzsiev K, Czakó M,
Kosztolányi G, Fogarasi A and Melegh B: Phenotypic variability in a
Hungarian patient with the 4q21 microdeletion syndrome. Mol
Cytogenet. 8:162015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hirano W, Gotoh I, Uekita T and Seiki M:
Membrane-type 1 matrix metalloproteinase cytoplasmic tail binding
protein-1 (MTCBP-1) acts as an eukaryotic aci-reductone dioxygenase
(ARD) in the methionine salvage pathway. Genes Cells. 10:565–574.
2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Oram SW, Ai J, Pagani GM, Hitchens MR,
Stern JA, Eggener S, Pins M, Xiao W, Cai X, Haleem R, et al:
Expression and function of the human androgen-responsive gene ADI1
in prostate cancer. Neoplasia. 9:643–651. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Cheng JC, Yeh YJ, Pai LM, Chang ML and Yeh
CT: 293 cells over-expressing human ADI1 and CD81 are permissive
for serum-derived hepatitis C virus infection. J Med Virol.
81:1560–1568. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chou HY, Lin YH, Shiu GL, Tang HY, Cheng
ML, Shiao MS and Pai LM: ADI1, a methionine salvage pathway enzyme,
is required for Drosophila fecundity. J Biomed Sci.
21:642014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pratt J, Iddir M, Bourgault S and Annabi
B: Evidence of MTCBP-1 interaction with the cytoplasmic domain of
MT1-MMP: Implications in the autophagy cell index of high-grade
glioblastoma. Mol Carcinog. 55:148–160. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Markovic DS, Vinnakota K, Chirasani S,
Synowitz M, Raguet H, Stock K, Sliwa M, Lehmann S, Kälin R, van
Rooijen N, et al: Gliomas induce and exploit microglial MT1-MMP
expression for tumor expansion. Proc Natl Acad Sci USA.
106:12530–12535. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Markovic DS, Vinnakota K, van Rooijen N,
Kiwit J, Synowitz M, Glass R and Kettenmann H: Minocycline reduces
glioma expansion and invasion by attenuating microglial MT1-MMP
expression. Brain Behav Immun. 25:624–628. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Huang M, Liu T, Ma P, Mitteer RA Jr, Zhang
Z, Kim HJ, Yeo E, Zhang D, Cai P, Li C, et al: c-Met-mediated
endothelial plasticity drives aberrant vascularization and
chemoresistance in glioblastoma. J Clin Invest. 126:1801–1814.
2016. View Article : Google Scholar : PubMed/NCBI
|