1
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
La Vecchia C, Malvezzi M, Bosetti C,
Garavello W, Bertuccio P, Levi F and Negri E: Thyroid cancer
mortality and incidence: A global overview. Int J Cancer.
136:2187–2195. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Xing M: Molecular pathogenesis and
mechanisms of thyroid cancer. Nat Rev Cancer. 13:184–199. 2013.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Hofstra RM, Landsvater RM, Ceccherini I,
Stulp RP, Stelwagen T, Luo Y, Pasini B, Höppener JW, van Amstel HK,
Romeo G, et al: A mutation in the RET proto-oncogene associated
with multiple endocrine neoplasia type 2B and sporadic medullary
thyroid carcinoma. Nature. 367:375–376. 1994. View Article : Google Scholar : PubMed/NCBI
|
5
|
Russo D, Damante G, Puxeddu E, Durante C
and Filetti S: Epigenetics of thyroid cancer and novel therapeutic
targets. J Mol Endocrinol. 46:R73–R81. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sogawa K, Imataka H, Yamasaki Y, Kusume H,
Abe H and Fujii-Kuriyama Y: cDNA cloning and transcriptional
properties of a novel GC box-binding protein, BTEB2. Nucleic Acids
Res. 21:1527–1532. 1993. View Article : Google Scholar : PubMed/NCBI
|
7
|
Dong JT, Boyd JC and Frierson HF Jr: Loss
of heterozygosity at 13q14 and 13q21 in high grade, high stage
prostate cancer. Prostate. 49:166–171. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chen C, Brabham WW, Stultz BG, Frierson HF
Jr, Barrett JC, Sawyers CL, Isaacs JT and Dong JT: Defining a
common region of deletion at 13q21 in human cancers. Genes
Chromosomes Cancer. 31:333–344. 2001. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Kojima S, Kobayashi A, Gotoh O, Ohkuma Y,
Fujii-Kuriyama Y and Sogawa K: Transcriptional activation domain of
human BTEB2, a GC box-binding factor. J Biochem. 121:389–396. 1997.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Dong JT and Chen C: Essential role of KLF5
transcription factor in cell proliferation and differentiation and
its implications for human diseases. Cell Mol Life Sci.
66:2691–2706. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Du C, Gao Y, Xu S, Jia J, Huang Z, Fan J,
Wang X, He D and Guo P: KLF5 promotes cell migration by
up-regulating FYN in bladder cancer cells. FEBS Lett. 590:408–418.
2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Maehara O, Sato F, Natsuizaka M, Asano A,
Kubota Y, Itoh J, Tsunematsu S, Terashita K, Tsukuda Y, Nakai M, et
al: A pivotal role of Krüppel-like factor 5 in regulation of cancer
stem-like cells in hepatocellular carcinoma. Cancer Biol Ther.
16:1453–1461. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ci X, Xing C, Zhang B, Zhang Z, Ni JJ,
Zhou W and Dong JT: KLF5 inhibits angiogenesis in PTEN-deficient
prostate cancer by attenuating AKT activation and subsequent HIF1α
accumulation. Mol Cancer. 14:912015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Saiselet M, Floor S, Tarabichi M, Dom G,
Hébrant A, van Staveren WC and Maenhaut C: Thyroid cancer cell
lines: An overview. Front Endocrinol (Lausanne).
3:1332012.PubMed/NCBI
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Chen HL, Chong IW, Lee YC, Tsai JR, Yuan
SS, Wang HM, Liu WL and Liu PL: Krüppel-like factor 5 mediates
proinflammatory cytokine expression in lipopolysaccharide-induced
acute lung injury through upregulation of nuclear factor-κB
phosphorylation in vitro and in vivo. Mediators Inflamm.
2014:2819842014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jing H and Lee S: NF-κB in cellular
senescence and cancer treatment. Mol Cells. 37:189–195. 2014.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yang Y, Goldstein BG, Nakagawa H and Katz
JP: Krüppel-like factor 5 activates MEK/ERK signaling via EGFR in
primary squamous epithelial cells. FASEB J. 21:543–550. 2007.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhao D, Zheng HQ, Zhou Z and Chen C: The
Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated
degradation and suppresses breast cell proliferation. Cancer Res.
70:4728–4738. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Grebe SK and Hay ID: Thyroid cancer nodal
metastases: Biologic significance and therapeutic considerations.
Surg Oncol Clin N Am. 5:43–63. 1996. View Article : Google Scholar : PubMed/NCBI
|
21
|
Fu RJ, He W, Wang XB, Li L, Zhao HB, Liu
XY, Pang Z, Chen GQ, Huang L and Zhao KW: DNMT1-maintained
hypermethylation of Krüppel-like factor 5 involves in the
progression of clear cell renal cell carcinoma. Cell Death Dis.
8:e29522017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Oishi Y, Manabe I, Tobe K, Tsushima K,
Shindo T, Fujiu K, Nishimura G, Maemura K, Yamauchi T, Kubota N, et
al: Krüppel-like transcription factor KLF5 is a key regulator of
adipocyte differentiation. Cell Metab. 1:27–39. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jia L, Zhou Z, Liang H, Wu J, Shi P, Li F,
Wang Z, Wang C, Chen W, Zhang H, et al: KLF5 promotes breast cancer
proliferation, migration and invasion in part by upregulating the
transcription of TNFAIP2. Oncogene. 35:2040–2051. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Parisi S, Passaro F, Aloia L, Manabe I,
Nagai R, Pastore L and Russo T: Klf5 is involved in self-renewal of
mouse embryonic stem cells. J Cell Sci. 121:2629–2634. 2008.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Qiu W, Xia X, Qiu Z, Guo M and Yang Z:
RasGRP3 controls cell proliferation and migration in papillary
thyroid cancer by regulating the Akt-MDM2 pathway. Gene. 633:35–41.
2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Guan H, Guo Z, Liang W, Li H, Wei G, Xu L,
Xiao H and Li Y: Trop2 enhances invasion of thyroid cancer by
inducing MMP2 through ERK and JNK pathways. BMC Cancer. 17:4862017.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Xiang S, Xiang T, Xiao Q, Li Y, Shao B and
Luo T: Zinc-finger protein 545 is inactivated due to promoter
methylation and functions as a tumor suppressor through the
Wnt/β-catenin, PI3K/AKT and MAPK/ERK signaling pathways in
colorectal cancer. Int J Oncol. 51:801–811. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lv N, Shan Z, Gao Y, Guan H, Fan C, Wang H
and Teng W: Twist1 regulates the epithelial-mesenchymal transition
via the NF-κB pathway in papillary thyroid carcinoma. Endocrine.
51:469–477. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen C, Sun X, Ran Q, Wilkinson KD, Murphy
TJ, Simons JW and Dong JT: Ubiquitin-proteasome degradation of KLF5
transcription factor in cancer and untransformed epithelial cells.
Oncogene. 24:3319–3327. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhi X, Zhao D, Zhou Z, Liu R and Chen C:
YAP promotes breast cell proliferation and survival partially
through stabilizing the KLF5 transcription factor. Am J Pathol.
180:2452–2461. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu N, Li H, Li S, Shen M, Xiao N, Chen Y,
Wang Y, Wang W, Wang R, Wang Q, et al: The Fbw7/human CDC4 tumor
suppressor targets proproliferative factor KLF5 for ubiquitination
and degradation through multiple phosphodegron motifs. J Biol Chem.
285:18858–18867. 2010. View Article : Google Scholar : PubMed/NCBI
|