1
|
Folkman J: Role of angiogenesis in tumor
growth and metastasis. Semin Oncol. 29 6 Suppl 16:S15–S18. 2002.
View Article : Google Scholar
|
2
|
Folkman J: Angiogenesis in cancer,
vascular, rheumatoid and other disease. Nat Med. 1:27–31. 1995.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Folkman J: Tumor angiogenesis: Therapeutic
implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ferrara N and Kerbel RS: Angiogenesis as a
therapeutic target. Nature. 438:967–974. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jayson GC, Kerbel R, Ellis LM and Harris
AL: Antiangiogenic therapy in oncology: Current status and future
directions. Lancet. 388:518–529. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kang F, Wang Z, Li G, Wang S, Liu D, Zhang
M, Zhao M, Yang W and Wang J: Inter-heterogeneity and
intra-heterogeneity of αvβ3 in non-small cell
lung cancer and small cell lung cancer patients as revealed by
68Ga-RGD2 PET imaging. Eur J Nucl Med Mol
Imaging. 44:1520–1528. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Niu G and Chen X: Why integrin as a
primary target for imaging and therapy. Theranostics. 1:30–47.
2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Danhier F, Le Breton AL and Préat V:
RGD-based strategies to target alpha(v) beta(3) integrin in cancer
therapy and diagnosis. Mol Pharm. 9:2961–2973. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen H, Gang N, Hua W and Chen X: Clinical
application of radiolabeled RGD peptides for PET imaging of
integrin αvβ3. Theranostics. 6:78–92. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gao S, Wu H, Li W, Zhao S, Teng X, Lu H,
Hu X, Wang S, Yu J and Yuan S: A pilot study imaging integrin αvβ3
with RGD PET/CT in suspected lung cancer patients. Eur J Nucl Med
Mol Imaging. 42:2029–2037. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Massoud TF and Gambhir SS: Molecular
imaging in living subjects: Seeing fundamental biological processes
in a new light. Genes Dev. 17:545–580. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wei YC, Gao Y, Zhang J, Fu Z, Zheng J, Liu
N, Hu X, Hou W, Yu J and Yuan S: Stereotactic comparison study of
18F-alfatide and 18F-FDG PET imaging in an
LLC tumor-bearing C57BL/6 mouse model. Sci Rep. 6:287572016.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang H, Liu N, Gao S, Hu X, Zhao W, Tao
R, Chen Z, Zheng J, Sun X, Xu L, et al: Can a novel
18F-ALF-NOTA-PRGD2 PET/CT predict the treatment
sensitivity of concurrent chemoradiotherapy in patients with newly
diagnosed glioblastoma? J Nucl Med. 57:524–529. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Luan X, Huang Y, Gao S, Sun X, Wang S, Ma
L, Teng X, Lu H, Yu J and Yuan S: 18F-alfatide PET/CT
may predict short-term outcome of concurrent chemoradiotherapy in
patients with advanced non-small cell lung cancer. Eur J Nucl Med
Mol Imaging. 43:2336–2342. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tian S, Quan H, Xie C, Guo H, Lü F, Xu Y,
Li J and Lou L: YN968D1 is a novel and selective inhibitor of
vascular endothelial growth factor receptor-2 tyrosine kinase with
potent activity in vitro and in vivo. Cancer Sci. 102:1374–1380.
2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Becker S, Bohn P, Bouyeure-Petit AC,
Modzelewski R, Gensanne D, Picquenot JM, Dubray B and Vera P:
Bevacizumab enhances efficiency of radiotherapy in a lung
adenocarcinoma rodent model: Role of αvβ3 imaging in determining
optimal window. Nucl Med Biol. 42:923–930. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wan W, Guo N, Pan D, Yu C, Weng Y, Luo S,
Ding H, Xu Y, Wang L, Lang L, et al: First experience of
18F-alfatide in lung cancer patients using a new
lyophilized kit for rapid radiofluorination. J Nucl Med.
54:691–698. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hu M, Xing L, Mu D, Yang W, Yang G, Kong L
and Yu J: Hypoxia imaging with 18F-fluoroerythronitroimidazole
integrated PET/CT and immunohistochemical studies in non-small cell
lung cancer. Clin Nucl Med. 38:591–596. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ji S, Zheng Y, Shao G, Zhou Y and Liu S:
Integrin αvβ3-targeted radiotracer
99mTc-3P-RGD2 useful for noninvasive
monitoring of breast tumor response to antiangiogenic linifanib
therapy but not anti-integrin αvβ3 RGD2 therapy.
Theranostics. 3:816–830. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Iagaru A, Mosci C, Mittra E, Zaharchuk G,
Fischbein N, Harsh G, Li G, Nagpal S, Recht L and Gambhir SS:
Glioblastoma multiforme recurrence: An exploratory study of
18F FPPRGD2 PET/CT. Radiology. 277:497–506.
2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Minamimoto R, Karam A, Jamali M,
Barkhodari A, Gambhir SS, Dorigo O and Iagaru A: Pilot prospective
evaluation of 18F-FPPRGD2 PET/CT in patients
with cervical and ovarian cancer. Eur J Nucl Med Mol Imaging.
43:1047–1055. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Tong RT, Boucher Y, Kozin SV, Winkler F,
Hicklin DJ and Jain RK: Vascular normalization by vascular
endothelial growth factor receptor 2 blockade induces a pressure
gradient across the vasculature and improves drug penetration in
tumors. Cancer Res. 64:3731–3736. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jain RK: Determinants of tumor blood flow:
A review. Cancer Res. 48:2641–2658. 1988.PubMed/NCBI
|
24
|
Kim KJ, Li B, Winer J, Armanini M, Gillett
N, Phillips HS and Ferrara N: Inhibition of vascular endothelial
growth factor-induced angiogenesis suppresses tumour growth in
vivo. Nature. 362:841–844. 1993. View Article : Google Scholar : PubMed/NCBI
|
25
|
Fukumura D and Jain RK: Tumor
microvasculature and microenvironment: Targets for
anti-angiogenesis and normalization. Microvasc Res. 74:72–84. 2007.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Kang F, Wang S, Tian F, Zhao M, Zhang M,
Wang Z, Li G, Liu C, Yang W, Li X, et al: Comparing the diagnostic
potential of 68Ga-Alfatide II and 18F-FDG in
differentiating between non-small cell lung cancer and
tuberculosis. J Nucl Med. 57:672–677. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Iagaru A, Mosci C, Shen B, Chin FT, Mittra
E, Telli ML and Gambhir SS: 18F-FPPRGD2
PET/CT: Pilot phase evaluation of breast cancer patients.
Radiology. 273:549–559. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhou Y, Kim YS, Lu X and Liu S: Evaluation
of 99mTc-labeled cyclic RGD dimers: Impact of cyclic RGD
peptides and 99mTc chelates on biological properties.
Bioconjug Chem. 23:586–595. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhou Y, Kim YS, Chakraborty S, Shi J, Gao
H and Liu S: 99mTc-labeled cyclic RGD peptides for
noninvasive monitoring of tumor integrin αVβ3
expression. Mol Imaging. 10:386–397. 2011. View Article : Google Scholar : PubMed/NCBI
|