Gene module analysis of juvenile myelomonocytic leukemia and screening of anticancer drugs
- Authors:
- Wencheng Zhao
- Lin Wang
- Yongbin Yu
-
Affiliations: Department of Paediatrics, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China, Key Laborarory, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China - Published online on: September 18, 2018 https://doi.org/10.3892/or.2018.6709
- Pages: 3155-3170
-
Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Chan RJ, Cooper T, Kratz CP, Weiss B and Loh ML: Juvenile myelomonocytic leukemia: A report from the 2nd International JMML Symposium. Leuk Res. 33:355–362. 2009. View Article : Google Scholar : PubMed/NCBI | |
Niemeyer CM and Kratz CP: Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: Molecular classification and treatment options. Br J Haematol. 140:610–624. 2008. View Article : Google Scholar : PubMed/NCBI | |
Niemeyer CM, Arico M, Basso G, Biondi A, Rajnoldi Cantu A, Creutzig U, Haas O, Harbott J, Hasle H, Kerndrup G, et al: Chronic myelomonocytic leukemia in childhood: A retrospective analysis of 110 cases. European working group on myelodysplastic syndromes in childhood (EWOG-MDS). Blood. 89:3534–3543. 1997.PubMed/NCBI | |
Bergstraesser E, Hasle H, Rogge T, Fischer A, Zimmermann M, Noellke P and Niemeyer CM: Non-hematopoietic stem cell transplantation treatment of juvenile myelomonocytic leukemia: A retrospective analysis and definition of response criteria. Pediatr Blood Cancer. 49:629–633. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dvorak CC and Loh ML: Juvenile myelomonocytic leukemia: Molecular pathogenesis informs current approaches to therapy and hematopoietic cell transplantation. Front Pediatr. 2:252014. View Article : Google Scholar : PubMed/NCBI | |
Locatelli F, Nollke P, Zecca M, Korthof E, Lanino E, Peters C, Pession A, Kabisch H, Uderzo C, Bonfim CS, et al: Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): Results of the EWOGMDS/EBMT trial. Blood. 105:410–419. 2005. View Article : Google Scholar : PubMed/NCBI | |
Locatelli F and Niemeyer CM: How I treat juvenile myelomonocytic leukemia. Blood. 125:1083–1090. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang PI and Marcotte EM: It's the machine that matters: Predicting gene function and phenotype from protein networks. J Proteomics. 73:2277–2289. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hedges SB: The origin and evolution of model organisms. Nat Rev Genet. 3:838–849. 2002. View Article : Google Scholar : PubMed/NCBI | |
Helsmoortel HH: Gene expression profiling of 44 JMML patients and 7 healthy donors (discovery cohort). Homo sapiens. Dec 23–2015. | |
Gautier L, Cope L, Bolstad BM and Irizarry RA: Affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 20:307–315. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bolstad BM, Irizarry RA, Astrand M and Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 19:185–193. 2003. View Article : Google Scholar : PubMed/NCBI | |
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 4:249–264. 2003. View Article : Google Scholar : PubMed/NCBI | |
Smyth GK: Limma: Linear models for microarray data, in Bioinformatics and computational biology solutions using R and Bioconductor. Springer. 397–420. 2005. | |
Liu H, Xu R, Liu X, Sun R and Wang Q: Bioinformatics analysis of gene expression in peripheralbloodmononuclearcells from children with type 1 diabetes in 3 periods. Exp Clin Endocrinol Diabetes. 122:477–483. 2014. View Article : Google Scholar : PubMed/NCBI | |
da Huang W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2008. View Article : Google Scholar | |
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene Ontology: Tool for the unification of biology. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kanehisa M and Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pagès F, Trajanoski Z and Galon J: ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 25:1091–1093. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI | |
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al: STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43:D447–D452. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bandettini WP, Kellman P, Mancini C, Booker OJ, Vasu S, Leung SW, Wilson JR, Shanbhag SM, Chen MY and Arai AE: MultiContrast Delayed Enhancement (MCODE) improves detection of subendocardial myocardial infarction by late gadolinium enhancement cardiovascular magnetic resonance: A clinical validation study. J Cardiovasc Magn Reson. 14:832012. View Article : Google Scholar : PubMed/NCBI | |
Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, et al: The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease. Science. 313:1929–1935. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lamb J: The connectivity map: A new tool for biomedical research. Nat Rev Cancer. 7:54–60. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Kirov S and Snoddy J: WebGestalt: An integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 33:W741–W748. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chang TY, Dvorak CC and Loh ML: Bedside to bench in juvenile myelomonocytic leukemia: Insights into leukemogenesis from a rare pediatric leukemia. Blood. 124:2487–2497. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sakashita K, Kato I, Daifu T, Saida S, Hiramatsu H, Nishinaka Y, Ebihara Y, Ma F, Matsuda K, Saito S, et al: In vitro expansion of CD34+CD38− cells under stimulation with hematopoietic growth factors on AGM-S3 cells in juvenile myelomonocytic leukemia. Leukemia. 29:606–614. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gualtieri RJ, Castleberry RP, Gibbons J, Miller DM, Berkow RL, Parmley RT and Banks J: Cell culture studies and oncogene expression in juvenile chronic myelogenous leukemia. Exp Hematol. 16:613–619. 1988.PubMed/NCBI | |
Gandre-Babbe S, Paluru P, Aribeana C, Chou ST, Bresolin S, Lu L, Sullivan SK, Tasian SK, Weng J, Favre H, et al: Patient-derived induced pluripotent stem cells recapitulate hematopoietic abnormalities of juvenile myelomonocytic leukemia. Blood. 121:4925–4929. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hadland BK, Huppert SS, Kanungo J, Xue Y, Jiang R, Gridley T, Conlon RA, Cheng AM, Kopan R and Longmore GD: A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood. 104:3097–3105. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi M, Shelley WC, Seo W, Vemula S, Lin Y, Liu Y, Kapur R, Taniuchi I and Yoshimoto M: Functional B-1 progenitor cells are present in the hematopoietic stem cell-deficient embryo and depend on Cbfβ for their development. Proc Natl Acad Sci USA. 111:12151–12156. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Yoder MC and Yoshimoto M: Lymphoid progenitor emergence in the murine embryo and yolk sac precedes stem cell detection. Stem Cells Dev. 23:1168–1177. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yoshimoto M, Montecino-Rodriguez E, Ferkowicz MJ, Porayette P, Shelley WC, Conway SJ, Dorshkind K and Yoder MC: Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proc Natl Acad Sci USA. 108:1468–1473. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yoshimoto M, Porayette P, Glosson NL, Conway SJ, Carlesso N, Cardoso AA, Kaplan MH and Yoder MC: Autonomous murine T-cell progenitor production in the extra-embryonic yolk sac before HSC emergence. Blood. 119:5706–5714. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mastrangelo MJ, Maguire HC Jr, Eisenlohr LC, Laughlin CE, Monken CE, McCue PA, Kovatich AJ and Lattime EC: Intratumoral recombinant gm-csf-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther. 6:409–422. 1999. View Article : Google Scholar : PubMed/NCBI | |
McNeel DG, Chen YH, Gulley JL, Dwyer AJ, Madan RA, Carducci MA and DiPaola RS: Randomized phase II trial of docetaxel with or without PSA-TRICOM vaccine in patients with castrate-resistant metastatic prostate cancer: A trial of the ECOG-ACRIN cancer research group (E1809). Hum Vaccin Immunother. 11:2469–2474. 2015. View Article : Google Scholar : PubMed/NCBI | |
Oudard S, Rixe O, Beuselinck B, Linassier C, Banu E, Machiels JP, Baudard M, Ringeisen F, Velu T, Lefrere-Belda MA, et al: A phase II study of the cancer vaccine TG4010 alone and in combination with cytokines in patients with metastatic renal clear-cell carcinoma: Clinical and immunological findings. Cancer Immunol Immunother. 60:261–271. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ottolino-Perry K, Acuna SA, Angarita FA, Sellers C, Zerhouni S, Tang N and McCart JA: Oncolytic vaccinia virus synergizes with irinotecan in colorectal cancer. Mol. Oncol. 9:1539–1552. 2015. | |
Quoix E, Lena H, Losonczy G, Forget F, Chouaid C, Papai Z, Gervais R, Ottensmeier C, Szczesna A, Kazarnowicz A, et al: TG4010 immunotherapy and first-line chemotherapy for advanced non-small-cell lung cancer (time): Results from the phase 2b part of a randomised, double-blind, placebo-controlled, phase 2B/3 trial. Lancet Oncol. 17:212–223. 2016. View Article : Google Scholar : PubMed/NCBI | |
Foy SP, Sennino B, dela Cruz T, Cote JJ, Gordon EJ, Kemp F, Xavier V, Franzusoff A, Rountree RB and Mandl SJ: Poxvirus-based active immunotherapy with PD-1 and LAG-3 dual immune checkpoint inhibition overcomes compensatory immune regulation, yielding complete tumor regression in mice. PLoS One. 11:e01500842016. View Article : Google Scholar : PubMed/NCBI | |
Foy SP, Mandl SJ, dela Cruz T, Cote JJ, Gordon EJ, Trent E, Delcayre A, Breitmeyer J, Franzusoff A and Rountree RB: Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells. Cancer Immunol Immunother. 65:537–549. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cappuccini F, Stribbling S, Pollock E, Hill AV and Redchenko I: Immunogenicity and efficacy of the novel cancer vaccine based on simian adenovirus and MVA vectors alone and in combination with PD-1 mAb in a mouse model of prostate cancer. Cancer Immunol Immunother. 65:701–713. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dimberg A: Chemokines in angiogenesis. Curr Top Microbiol Immunol. 341:59–80. 2010.PubMed/NCBI | |
Speyer CL and Ward PA: Role of endothelial chemokines and their receptors during inflammation. J Invest Surg. 24:18–27. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ben-Baruch A: The multifaceted roles of chemokines in malignancy. Cancer Metastasis Rev. 25:357–371. 2006. View Article : Google Scholar : PubMed/NCBI | |
Luther SA and Cyster JG: Chemokines as regulators of T cell differentiation. Nat Immunol. 2:102–107. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes. Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C and Stuart JM: The cancer genome atlas pan-cancer analysis project. Nat Genet. 45:1113–1120. 2013. View Article : Google Scholar : PubMed/NCBI | |
International Cancer Genome Consortium, . Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabé RR, Bhan MK, Calvo F, Eerola I, Gerhard DS, et al: International network of cancer genome projects. Nature. 464:993–998. 2010. View Article : Google Scholar : PubMed/NCBI | |
Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, Schlimok G, Diel IJ, Gerber B, Gebauer G, et al: A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med. 353:793–802. 2005. View Article : Google Scholar : PubMed/NCBI | |
Janni W, Vogl FD, Wiedswang G, Synnestvedt M, Fehm T, Juckstock J, Borgen E, Rack B, Braun S, Sommer H, et al: Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse-a European pooled analysis. Clin Cancer Res. 17:2967–2976. 2011. View Article : Google Scholar : PubMed/NCBI | |
Budowle B, Allard MW, Wilson MR and Chakraborty R: Forensics and mitochondrial DNA: Applications, debates, and foundations. Ann Rev Genom Hum Genet. 4:119–141. 2003. View Article : Google Scholar | |
International HapMap Consortium, . Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, et al: A second generation human haplotype map of over 3.1 million SNPs. Nature. 449:851–861. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, Chen G and Rodriguez WR: Micro-and nanotechnology for viral detection. Anal Bioanal Chem. 393:487–501. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo WL, Chen C, Zhai Y, et al: High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 20:207–211. 1998. View Article : Google Scholar : PubMed/NCBI | |
Sozzi G, Conte D, Mariani L, Lo Vullo S, Roz L, Lombardo C, Pierotti MA and Tavecchio L: Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Res. 61:4675–4678. 2001.PubMed/NCBI | |
Bhowmick NA, Neilson EG and Moses HL: 2004. Stromal fibroblasts in cancer initiation and progression. Nature. 432:332–337. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, Pinkel D, Bissell MJ and Werb Z: The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell. 98:137–146. 1999. View Article : Google Scholar : PubMed/NCBI | |
Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, et al: Tensional homeostasis and the malignant phenotype. Cancer Cell. 8:241–254. 2005. View Article : Google Scholar : PubMed/NCBI | |
Erler JT, Bennewith KL, Nicolau M, Dornhöfer N, Kong C, Le QT, Chi JT, Jeffrey SS and Giaccia AJ: Lysyl oxidase is essential for hypoxia-induced metastasis. Nature. 440:1222–1226. 2006. View Article : Google Scholar : PubMed/NCBI | |
Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, et al: Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139. 1–906. 2009. | |
Hynes RO: The extracellular matrix: Not just pretty fibrils. Science. 326:1216–1219. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wiseman BS, Sternlicht MD, Lund LR, Alexander CM, Mott J, Bissell MJ, Soloway P, Itohara S and Werb Z: Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J Cell Biol. 162:1123–1133. 2003. View Article : Google Scholar : PubMed/NCBI | |
Stickens D, Behonick DJ, Ortega N, Heyer B, Hartenstein B, Yu Y, Fosang AJ, Schorpp-Kistner M, Angel P and Werb Z: Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development. 131:5883–5895. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rebustini IT, Myers C, Lassiter KS, Surmak A, Szabova L, Holmbeck K, Pedchenko V, Hudson BG and Hoffman MP: MT2-MMP-dependent release of collagen IV NC1 domains regulates submandibular gland branching morphogenesis. Dev Cell. 17:482–493. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lu P, Takai K, Weaver VM and Werb Z: Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 3:a0050582011. View Article : Google Scholar : PubMed/NCBI | |
Cox TR and Erler JT: Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer. Dis Model Mech. 4:165–178. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kitamura T, Qian BZ and Pollard JW: Immune cell promotion of metastasis. Nat Rev Immunol. 15:73–86. 2015. View Article : Google Scholar : PubMed/NCBI | |
Grivennikov SI, Greten FR and Karin M: Immunity, inflammation, and cancer. Cell. 140:883–899. 2010. View Article : Google Scholar : PubMed/NCBI | |
DeNardo DG and Coussens LM: Inflammation and breast cancer. Balancing immune response: Crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 9:2122007. View Article : Google Scholar : PubMed/NCBI | |
Hatzoglou A, Ouafik L, Bakogeorgou E, Thermos K and Castanas E: Morphine cross-reacts with somatostatin receptor SSTR2 in the T47D human breast cancer cell line and decreases cell growth. Cancer Res. 55:5632–5636. 1995.PubMed/NCBI | |
Rasmussen M, Zhu W, Tønnesen J, Cadet P, Tønnesen E and Stefano GB: Effects of morphine on tumor growth. Neuro Endocrinol Lett. 23:193–198. 2002.PubMed/NCBI | |
Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL and Mitchison TJ: Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science. 286:971–974. 1999. View Article : Google Scholar : PubMed/NCBI | |
Crews CM and Mohan R: Small-molecule inhibitors of the cell cycle. Curr Opin Chem Biol. 4:47–53. 2000. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Gong H and Huang K: Oncogenic role of kinesin proteins and targeting kinesin therapy. Cancer Sci. 104:651–656. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kapoor TM, Mayer TU, Coughlin ML and Mitchison TJ: Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J Cell Biol. 150:975–988. 2000. View Article : Google Scholar : PubMed/NCBI | |
DeBonis S, Simorre JP, Crevel I, Lebeau L, Skoufias DA, Blangy A, Ebel C, Gans P, Cross R, Hackney DD, et al: Interaction of the mitotic inhibitor monastrol with human kinesin Eg5. Biochemistry. 42:338–349. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cochran JC and Gilbert SP: ATPase mechanism of Eg5 in the absence of microtubules: Insight into microtubule activation and allosteric inhibition by monastrol. Biochemistry. 44:16633–16648. 2005. View Article : Google Scholar : PubMed/NCBI | |
Haque SA, Hasaka TP, Brooks AD, Lobanov PV and Baas PW: Monastrol, a prototype anti-cancer drug that inhibits a mitotic kinesin, induces rapid bursts of axonal outgrowth from cultured postmitotic neurons. Cell Motil Cytoskeleton. 58:10–16. 2004. View Article : Google Scholar : PubMed/NCBI | |
Maliga Z, Kapoor TM and Mitchison TJ: Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5. Chem Biol. 9:989–996. 2002. View Article : Google Scholar : PubMed/NCBI | |
Müller C, Gross D, Sarli V, Gartner M, Giannis A, Bernhardt G and Buschauer A: Inhibitors of kinesin Eg5: Antiproliferative activity of monastrol analogues against human glioblastoma cells. Cancer Chemother Pharmacol. 59:157–164. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cascinu S, Bichisao E, Amadori D, Silingardi V, Giordani P, Sansoni E, Luppi G, Catalano V, Agostinelli R and Catalano G: High-dose loperamide in the treatment of 5-fluorouracil-induced diarrhea in colorectal cancer patients. Support Care Cancer. 8:65–67. 2000.PubMed/NCBI | |
Vail DM: Supporting the veterinary cancer patient on chemotherapy: Neutropenia and gastrointestinal toxicity. Top Companion Anim Med. 24:122–129. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gong XW, Xu YH, Chen XL and Wang YX: Loperamide, an antidiarrhea drug, has antitumor activity by inducing cell apoptosis. Pharmacol Res. 65:372–378. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ohman R and Axelsson R: Relationship between prolactin response and antipsychotic effect of thioridazine in psychiatric-patients. Eur J Clin Pharmacol. 14:111–116. 1978. View Article : Google Scholar : PubMed/NCBI | |
Realmuto GM, Erickson WD, Yellin AM, Hopwood JH and Greenberg LM: Clinical comparison of thiothixene and thioridazine in schizophrenic adolescents. Am J Psychiatry. 141:440–442. 1984. View Article : Google Scholar : PubMed/NCBI | |
van Soolingen D, Hernandez-Pando R, Orozco H, Aguilar D, Magis-Escurra C, Amaral L, van Ingen J and Boeree MJ: The antipsychotic thioridazine shows promising therapeutic activity in a mouse model of multidrug-resistant tuberculosis. PLoS One. 5:e126402010. View Article : Google Scholar : PubMed/NCBI | |
Thorsing M, Klitgaard JK, Atilano ML, Skov MN, Kolmos HJ, Filipe SR and Kallipolitis BH: Thioridazine induces major changes in global gene expression and cell wall composition in methicillin-resistant Staphylococcus aureus USA300. PLoS One. 8:e645182013. View Article : Google Scholar : PubMed/NCBI | |
Byun HJ, Lee JH, Kim BR, Kang S, Dong SM, Park MS, Lee SH, Park SH and Rho SB: Anti-angiogenic effects of thioridazine involving the FAK-mTOR pathway. Microvasc Res. 84:227–234. 2012. View Article : Google Scholar : PubMed/NCBI | |
Park MS, Dong SM, Kim BR, Seo SH, Kang S, Lee EJ, Lee SH and Rho SB: Thioridazine inhibits angiogenesis and tumor growth by targeting the VEGFR-2/PI3K/mTOR pathway in ovarian cancer xenografts. Oncotarget. 5:4929–4934. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kang S, Dong SM, Kim BR, Park MS, Trink B, Byun HJ and Rho SB: Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis. 17:989–997. 2012. View Article : Google Scholar : PubMed/NCBI | |
Csonka Á, Spengler G, Martins A, Ocsovszki I, Christensen JB, Hendricks O, Kristiansen JE, Amaral L and Molnar J: Effect of thioridazine stereoisomers on the drug accumulation of mouse lymphoma and human prostate cancer cell lines in vitro. In Vivo. 27:815–820. 2013.PubMed/NCBI | |
Mu J, Xu H, Yang Y, Huang W, Xiao J, Li M, Tan Z, Ding Q, Zhang L, Lu J, et al: Thioridazine, an antipsychotic drug, elicits potent antitumor effects in gastric cancer. Oncol Rep. 31:2107–2114. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nagel D, Spranger S, Vincendeau M, Grau M, Raffegerst S, Kloo B, Hlahla D, Neuenschwander M, von Kries Peter J, Hadian K, et al: Pharmacologic inhibition of MALT1 protease by phenothiazines as a therapeutic approach for the treatment of aggressive ABC-DLBCL. Cancer Cell. 22:825–837. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sachlos E, Risueño RM, Laronde S, Shapovalova Z, Lee JH, Russell J, Malig M, McNicol JD, Fiebig-Comyn A, Graham M, et al: Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell. 149:1284–1297. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ke XY, Lin Ng VW, Gao SJ, Tong YW, Hedrick JL and Yang YY: Co-delivery of thioridazine and doxorubicin using polymeric micelles for targeting both cancer cells and cancer stem cells. Biomaterials. 35:1096–1108. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nudelman A, Ruse M, Aviram A, Rabizadeh E, Shaklai M, Zimrah Y and Rephaeli A: Novel anticancer prodrugs of butyric acid. 2. J Med Chem. 35:687–694. 1992. View Article : Google Scholar : PubMed/NCBI | |
Wu CH, Jeng JH, Wang YJ, Tseng CJ, Liang YC, Chen CH, Lee HM, Lin JK, Lin CH, Lin SY, et al: Antitumor effects of miconazole on human colon carcinoma xenografts in nude mice through induction of apoptosis and G0/G1 cell cycle arrest. Toxicol Appl Pharmacol. 180:22–35. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lewinska A, Adamczyk-Grochala J, Kwasniewicz E, Deregowska A and Wnuk M: Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells. Apoptosis. 22:800–815. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiao Y, Hannafon BN, Zhang RR, Fung KM and Ding WQ: Docosahexaenoic acid and disulfiram act in concert to kill cancer cells: A mutual enhancement of their anticancer actions. Oncotarget. 8:17908–17920. 2017. View Article : Google Scholar : PubMed/NCBI |