1
|
Meister S, Schubert U, Neubert K, Herrmann
K, Burger R, Gramatzki M, Hahn S, Schreiber S, Wilhelm S, Herrmann
M, et al: Extensive immunoglobulin production sensitizes myeloma
cells for proteasome inhibition. Cancer Res. 67:1783–1792. 2007.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Griffin PT, Ho VQ, Fulp W, Nishihori T,
Shain KH, Alsina M and Baz RC: A comparison of salvage infusional
chemotherapy regimens for recurrent/refractory multiple myeloma.
Cancer. 121:3622–3630. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Nikesitch N and Ling SC: Molecular
mechanisms in multiple myeloma drug resistance. J Clin Pathol.
69:97–101. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Adams J: The proteasome: A suitable
antineoplastic target. Nat Rev Cancer. 4:349–360. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chauhan D and Anderson KC: Mechanisms of
cell death and survival in multiple myeloma (MM): Therapeutic
implications. Apoptosis. 8:337–343. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Qin JZ, Ziffra J, Stennett L, Bodner B,
Bonish BK, Chaturvedi V, Bennett F, Pollock PM, Trent JM, Hendrix
MJ, et al: Proteasome inhibitors trigger NOXA-mediated apoptosis in
melanoma and myeloma cells. Cancer Res. 65:6282–6293. 2005.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Roccaro AM, Hideshima T, Raje N, Kumar S,
Ishitsuka K, Yasui H, Shiraishi N, Ribatti D, Nico B, Vacca A, et
al: Bortezomib mediates antiangiogenesis in multiple myeloma via
direct and indirect effects on endothelial cells. Cancer Res.
66:184–191. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Murray MY, Auger MJ and Bowles KM:
Overcoming bortezomib resistance in multiple myeloma. Biochem Soc
Trans. 42:804–808. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhou W, Yang Y, Xia J, Wang H, Salama ME,
Xiong W, Xu H, Shetty S, Chen T, Zeng Z, et al: NEK2 induces drug
resistance mainly through activation of efflux drug pumps and is
associated with poor prognosis in myeloma and other cancers. Cancer
Cell. 23:48–62. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yu W, Chen Y, Xiang R, Xu W, Wang Y, Tong
J, Zhang N, Wu Y and Yan H: Novel phosphatidylinositol 3-kinase
inhibitor BKM120 enhances the sensitivity of multiple myeloma to
bortezomib and overcomes resistance. Leuk Lymphoma. 58:428–437.
2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Abe M: Multiple myeloma. Nihon Rinsho.
67:991–995. 2009.(In Japanese). PubMed/NCBI
|
12
|
Tomono T, Yano K and Ogihara T:
Snail-induced epithelial-to-mesenchymal transition enhances
P-gp-mediated multidrug resistance in HCC827 cells. J Pharm Sci.
106:2642–2649. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cho JH, Lee SJ, Oh AY, Yoon MH, Woo TG and
Park BJ: NF2 blocks Snail-mediated p53 suppression in mesothelioma.
Oncotarget. 6:10073–10085. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Abdi J, Chen G and Chang H: Drug
resistance in multiple myeloma: Latest findings and new concepts on
molecular mechanisms. Oncotarget. 4:2186–2207. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gaultney JG, Ng TW, Uyl-de Groot CA,
Sonneveld P, van Beers EH, van Vliet MH and Redekop WK: Potential
therapeutic and economic value of risk-stratified treatment as
initial treatment of multiple myeloma in Europe. Pharmacogenomics.
19:213–226. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wu T, Zhou J, Wang C, Wang B, Zhang S and
Bai H: Bortezomib overcomes the negative prognostic impact of renal
impairment in a newly diagnosed elderly patient with multiple
myeloma: A case report. Oncol Lett. 14:7318–7322. 2017.PubMed/NCBI
|
17
|
Gavriatopoulou M, Terpos E, Kastritis E
and Dimopoulos MA: Efficacy and safety of elotuzumab for the
treatment of multiple myeloma. Expert Opin Drug Saf. 16:237–245.
2017.PubMed/NCBI
|
18
|
Adam Z, Sčudla V, Krejčí M, Cermáková Z,
Pour L and Král Z: Treatment of AL amyloidosis in 2012; the benefit
of new drugs (bortezomib, thalidomide, and lenalidomide). Summary
of published clinical trials. Vnitr Lek. 59:37–58. 2013.(In
Czech).
|
19
|
Abidi MH, Gul Z, Abrams J, Ayash L, Deol
A, Ventimiglia M, Lum L, Mellon-Reppen S, Al-Kadhimi Z,
Ratanatharathorn V, et al: Phase I trial of bortezomib during
maintenance phase after high dose melphalan and autologous stem
cell transplantation in patients with multiple myeloma. J
Chemother. 24:167–172. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jacob P, Hirt H and Bendahmane A: The
heat-shock protein/chaperone network and multiple stress
resistance. Plant Biotechnol J. 15:405–414. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Carmichael CL and Haigh JJ: The Snail
family in normal and malignant haematopoiesis. Cells Tissues
Organs. 203:82–98. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nieto MA: The snail superfamily of
zinc-finger transcription factors. Nat Rev Mol Cell Biol.
3:155–166. 2002. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Cheng CW, Wu PE, Yu JC, Huang CS, Yue CT,
Wu CW and Shen CY: Mechanisms of inactivation of E-cadherin in
breast carcinoma: Modification of the two-hit hypothesis of tumor
suppressor gene. Oncogene. 20:pp. 3814–3823. 2001, View Article : Google Scholar : PubMed/NCBI
|
24
|
Argast GM, Krueger JS, Thomson S,
Sujka-Kwok I, Carey K, Silva S, O'Connor M, Mercado P, Mulford IJ,
Young GD, et al: Inducible expression of TGFβ, snail and Zeb1
recapitulates EMT in vitro and in vivo in a NSCLC model. Clin Exp
Metastasis. 28:593–614. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Barnett P, Arnold RS, Mezencev R, Chung
LW, Zayzafoon M and Odero-Marah V: Snail-mediated regulation of
reactive oxygen species in ARCaP human prostate cancer cells.
Biochem Biophys Res Commun. 404:34–39. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang H, Zhang G, Zhang H, Zhang F, Zhou B,
Ning F, Wang HS, Cai SH and Du J: Acquisition of
epithelial-mesenchymal transition phenotype and cancer stem
cell-like properties in cisplatin-resistant lung cancer cells
through AKT/β-catenin/Snail signaling pathway. Eur J Pharmacol.
723:156–166. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang K, Wang X and Wang H: Effect and
mechanism of Src tyrosine kinase inhibitor sunitinib on the
drug-resistance reversal of human A549/DDP cisplatin-resistant lung
cancer cell line. Mol Med Rep. 10:2065–2072. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kawashima A, Takayama H, Kawamura N, Doi
N, Sato M, Hatano K, Nagahara A, Uemura M, Nakai Y, Nishimura K, et
al: Co-expression of ERCC1 and Snail is a prognostic but not
predictive factor of cisplatin-based neoadjuvant chemotherapy for
bladder cancer. Oncol Lett. 4:15–21. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Brozovic A: The relationship between
platinum drug resistance and epithelial-mesenchymal transition.
Arch Toxicol. 91:605–619. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Semina SE, Scherbakov AM, Kovalev SV,
Shevchenko VE and Krasil'nikov MA: Horizontal transfer of tamoxifen
resistance in MCF-7 cell derivates: Proteome study. Cancer Invest.
35:506–518. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ware KE, Somarelli JA, Schaeffer D, Li J,
Zhang T, Park S, Patierno SR, Freedman J, Foo WC, Garcia-Blanco MA,
et al: Snail promotes resistance to enzalutamide through regulation
of androgen receptor activity in prostate cancer. Oncotarget.
7:50507–50521. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhan M, Yu D, Lang A, Li L and Pollock RE:
Wild type p53 sensitizes soft tissue sarcoma cells to doxorubicin
by down-regulating multidrug resistance-1 expression. Cancer.
92:1556–1566. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hasna J, Hague F, Rodat-Despoix L, Geerts
D, Leroy C, Tulasne D, Ouadid-Ahidouch H and Kischel P: Orai3
calcium channel and resistance to chemotherapy in breast cancer
cells: The p53 connection. Cell Death Differ. 25:691–705.
2018.PubMed/NCBI
|
34
|
Cannell IG, Merrick KA, Morandell S, Zhu
CQ, Braun CJ, Grant RA, Cameron ER, Tsao MS, Hemann MT and Yaffe
MB: A pleiotropic RNA-binding protein controls distinct cell cycle
checkpoints to drive resistance of p53-defective tumors to
chemotherapy. Cancer Cell. 28:8312015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Luanpitpong S, Angsutararux P, Samart P,
Chanthra N, Chanvorachote P and Issaragrisil S:
Hyper-O-GlcNAcylation induces cisplatin resistance via regulation
of p53 and c-Myc in human lung carcinoma. Sci Rep. 7:106072017.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Singh MS, Tammam SN, Shetab Boushehri MA
and Lamprecht A: MDR in cancer: Addressing the underlying cellular
alterations with the use of nanocarriers. Pharmacol Res. 126:2–30.
2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Montazami N, Aghapour M, Farajnia S and
Baradaran B: New insights into the mechanisms of multidrug
resistance in cancers. Cell Mol Biol (Noisy-le-grand). 61:70–80.
2015.PubMed/NCBI
|
38
|
Mancuso MR and Massarweh SA: Endocrine
therapy and strategies to overcome therapeutic resistance in breast
cancer. Curr Probl Cancer. 40:95–105. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Bach DH, Hong JY, Park HJ and Lee SK: The
role of exosomes and miRNAs in drug-resistance of cancer cells. Int
J Cancer. 141:220–230. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Çalışkan M, Güler H and Bozok Çetintaş V:
Current updates on microRNAs as regulators of chemoresistance.
Biomed Pharmacother. 95:1000–1012. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Leivonen SK, Icay K, Jäntti K, Siren I,
Liu C, Alkodsi A, Cervera A, Ludvigsen M, Hamilton-Dutoit SJ,
d'Amore F, et al: MicroRNAs regulate key cell survival pathways and
mediate chemosensitivity during progression of diffuse large B-cell
lymphoma. Blood Cancer J. 7:6542017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Fan W, Huang J, Xiao H and Liang Z:
MicroRNA-22 is downregulated in clear cell renal cell carcinoma,
and inhibits cell growth, migration and invasion by targeting PTEN.
Mol Med Rep. 13:4800–4806. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang J, Li Y, Ding M, Zhang H, Xu X and
Tang J: Molecular mechanisms and clinical applications of miR-22 in
regulating malignant progression in human cancer (Review). Int J
Oncol. 50:345–355. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
JThottassery JV, Zambetti GP, Arimori K,
Schuetz EG and Schuetz JD: p53-dependent regulation of MDR1 gene
expression causes selective resistance to chemotherapeutic agents.
Proc Natl Acad Sci USA. 94:11037–11042. 1997. View Article : Google Scholar : PubMed/NCBI
|