1
|
Haggar FA and Boushey RP: Colorectal
cancer epidemiology: Incidence, mortality survival, and risk
factors. Clin Colon Rectal Surg. 22:191–197. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Dromain C, Caramella C, Dartigues P, Goere
D, Ducreux M and Deschamps F: Liver, lung and peritoneal metastases
in colorectal cancers: Is the patient still curable? What should
the radiologist know. Diagn Interv Imaging. 95:513–523. 2014.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Tsoulfas G, Pramateftakis MG and Kanellos
I: Surgical treatment of hepatic metastases from colorectal cancer.
World J Gastrointest Oncol. 3:1–9. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Dahabre J, Vasilaki M, Stathopoulos GP,
Kondaxis A, Iliadis K, Papadopoulos G, Stathopoulos J, Rigatos S,
Vasilikos K and Koutantos J: Surgical management in lung metastases
from colorectal cancer. Anticancer Res. 27:4387–4390.
2007.PubMed/NCBI
|
6
|
Kim HJ, Kye BH, Lee JI, Lee SC, Lee YS,
Lee IK, Kang WK, Cho HM, Moon SW and Oh ST: Surgical resection for
lung metastases from colorectal cancer. J Korean Soc Coloproctol.
26:354–358. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Martin TA, Ye L, Sanders AJ, Lane J and
Jiang WG: Cancer invasion and metastasis: Molecular and cellular
perspective. Metastatic Cancer: Clinical and Biological
Perspectives. Jandial R: Landes Bioscience; Austin: pp. 135–168.
2013
|
8
|
Mishra J, Drummond J, Quazi SH, Karanki
SS, Shaw JJ, Chen B and Kumar N: Prospective of colon cancer
treatments and scope for combinatorial approach to enhanced cancer
cell apoptosis. Crit Rev Oncol Hematol. 86:232–250. 2013.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Kalluri R and Weinberg RA: The basics of
epithelial-mesenchymal transition. J Clin Inv est. 119:1420–1428.
2009. View
Article : Google Scholar
|
10
|
Garg M: Epithelial-mesenchymal
transition-activating transcription factors-multifunctional
regulators in cancer. World J Stem Cells. 5:188–195. 2013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Heerboth S, Housman G, Leary M, Longacre
M, Byler S, Lapinska K, Willbanks A and Sarkar S: E MT and tumor
metastasis. Clin Transl Med. 4:62015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lowe SW and Lin AW: Apoptosis in cancer.
Carcinogenesis. 23:485–495. 2000. View Article : Google Scholar
|
13
|
Olsson M and Zhivotovsky B: Caspases and
cancer. Cell Death Differ. 18:1441–1449. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Herceg Z and Wang ZQ: Functions of
poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity
and cell death. Mutat Res. 477:97–110. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tsujimoto Y: Role of Bcl-2 family proteins
in apoptosis: Apoptosomes or mitochondria? Genes Cells. 3:697–707.
1998. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wong RS: Apoptosis in cancer: From
pathogenesis to treatment. J Exp Clin Cancer Res. 30:872011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Monteverde T, Muthalagu N, Port J and
Murphy DJ: Evidence of cancer-promoting roles for AMPK and related
kinases. FEBS J. 282:4658–4671. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Schultze SM, Hemmings BA, Niessen M and
Tschopp O: P I3K/AKTMA PK and AMPK signalling: Protein kinases in
glucose homeostasis. Expert Rev Mol Med. 14:e12012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hardie DG, Ross FA and Hawley SA: AMPK: A
nutrient and energy sensor that maintains energy homeostasis. Nat
Rev Mol Cell Biol. 13:251–262. 2012. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Rehman G, Shehzad A, Khan AL and Hamayun
M: Role of AMP-activated protein kinase in cancer therapy. Arch
Pharm. 347:457–468. 2014. View Article : Google Scholar
|
21
|
Baba Y, Nosho K, Shima K, Meyerhardt JA,
Chan AT, Engelman JA, Cantley LC, Loda M, Giovannucci E, Fuchs CS
and Ogino S: Prognostic significance of AMP-activated protein
kinase expression and modifying effect of MAPK3/1 in colorectal
cancer. Br J Cancer. 103:1025–1033. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ahn YJ, Lee CO, Kweon JH, Ahn JW and Park
JH: Growth-inhibitory effects of Galla Rhois-derived tannins on
intestinal bacteria. J Appl Microbiol. 84:439–443. 1998. View Article : Google Scholar : PubMed/NCBI
|
23
|
Go J, Kim JE, Koh EK, Song SH, Seong JE,
Park CK, Lee HA, Kim HS, Lee JH, An BS, et al: Hepatotoxicity and
nephrotoxicity of gallotannin-enriched extract isolated from Galla
Rhois in ICR mice. Lab Anim Res. 31:101–110. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kim SH, Park HH, Lee S, Jun CD, Choi BJ,
Kim SY, Kim SH, Kim DK, Park JS, Chae BS, et al: The
anti-anaphylactic effect of the gall of Rhus javanica is mediated
through inhibition of histamine release and inflammatory cytokine
secretion. Int Immunopharmacol. 5:1820–1829. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yim NH, Gu MJ, Hwang YH, Cho WK and Ma JY:
Water extract of Galla Rhois with steaming process enhances
apoptotic cell death in human colon cancer cells. Integr Med Res.
5:284–292. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lee HJ, Seo NJ, Jeong SJ, Park Y, Jung DB,
Koh W, Lee HJ, Lee EO, Ahn KS, Ahn KS, et al: Oral administration
of penta-O-galloyl-β-D-glucose suppresses triple-negative breast
cancer xenograft growth and metastasis in strong association with
JAK1-STAT3 inhibition. Carcinogenesis. 32:804–811. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Deiab S, Mazzio E, Eyunni S, McTier O,
Mateeva N, Elshami F and Soliman KF:
1,2,3,4,6-Penta-O-galloylglucose within Galla Chinensis inhibits
human LDH-A and attenuates cell proliferation in MDA-MB-231 breast
cancer cells. Evid Based Complement Alternat Med. 2015:2769462015.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Ata N, Oku T, Hattori M, Fujii H, Nakajima
M and Saiki I: Inhibition by galloylglucose (GG6-10) of tumor
invasion through extracellular matrix and gelatinase-mediated
degradation of type IV collagens by metastatic tumor cells. Oncol
Res. 8:503–511. 1996.PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen MB, Zhang Y, Wei MX, Shen W, Wu XY,
Yao C and Lu PH: Activation of AMP-activated protein kinase (AMPK)
mediates plumbagin-induced apoptosis and growth inhibition in
cultured human colon cancer cells. Cell Signal. 25:1993–2002. 2013.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Chai Y, Lee HJ, Shaik AA, Nkhata K, Xing
C, Zhang J, Jeong SJ, Kim SH and Lu J:
Penta-O-galloyl-beta-D-glucose induces G1 arrest and DNA
replicative S-phase arrest independently of cyclin-dependent kinase
inhibitor 1A, cyclin-dependent kinase inhibitor 1B and P53 in human
breast cancer cells and is orally active against triple negative
xenograft growth. Breast Cancer Res. 12:R672010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li W, Saud SM, Young MR, Chen G and Hua B:
Targeting AMPK for cancer prevention and treatment. Oncotarget.
6:7365–7378. 2015.PubMed/NCBI
|
33
|
Plews RL, Mohd Yusof A, Wang C, Saji M,
Zhang X, Chen CS, Ringel MD and Phay JE: A novel dual AMPK
activator/mTOR inhibitor inhibits thyroid cancer cell growth. J
Clin Endocrinol Metab. 100:E748–E756. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kim MJ, Yun H, Kim DH, Kang I, Choe W, Kim
SS and Ha J: AMP-activated protein kinase determines apoptotic
sensitivity of cancer cells to ginsenoside-Rh2. J Ginseng Res.
38:16–21. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Son H and Moon A: Epithelial-mesenchymal
transition and cell invasion. Toxicol Res. 26:245–252. 2010.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Plati J, Bucur O and Khosravi-Far R:
Apoptotic cell signaling in cancer progression and therapy. Integr
Biol. 3:279–296. 2011. View Article : Google Scholar
|
37
|
Takeda K, Stagg J, Yagita H, Okumura K and
Smyth MJ: Targeting death-inducing receptors in cancer therapy.
Oncogene. 26:3745–3757. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Su Z, Yang Z, Xu Y, Chen Y and Yu Q:
Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol
Cancer. 14:482015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hideshima T and Anderson KC: Molecular
mechanisms of novel therapeutic approaches for multiple myeloma.
Nat Rev Cancer. 2:927–937. 2002. View
Article : Google Scholar : PubMed/NCBI
|
40
|
Han YH, Kee JY, Kim DS, Mun JG, Jeong MY,
Park SH, Choi BM, Park SJ, Kim HJ, Um JY, et al: Arctigenin
inhibits lung metastasis of colorectal cancer by regulating cell
viability and metastatic phenotypes. Molecules. 21:E11352016.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Huang T, Xiao Y, Yi L, Li L, Wang M, Tian
C, Ma H, He K, Wang Y, Han B, et al: Coptisine from rhizoma
coptidis suppresses hct-116 cells-related tumor growth in vitro and
in vivo. Sci Rep. 7:385242017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lu Z and Xu S: ERK1/2 MAP kinases in cell
survival and apoptosis. IUBMB Life. 58:621–631. 2006. View Article : Google Scholar : PubMed/NCBI
|
43
|
Grossi V, Peserico A, Tezil T and Simone
C: p38α MAPK pathway: A key factor in colorectal cancer therapy and
chemoresistance. World J Gastroenterol. 20:9744–9758. 2014.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Sui X, Kong N, Ye L, Han W, Zhou J, Zhang
Q, He C and Pan H: p38 and JNK MAPK pathways control the balance of
apoptosis and autophagy in response to chemotherapeutic agents.
Cancer Lett. 344:174–179. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Chen L, Mayer JA, Krisko TI, Speers CW,
Wang T, Hilsenbeck SG and Brown PH: Inhibition of the p38 kinase
suppresses the proliferation of human ER-negative breast cancer
cells. Cancer Res. 69:8853–8861. 2009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Thornton TM and Rincon M: Non-classical
p38 map kinase functions: Cell cycle checkpoints and survival. Int
J Biol Sci. 5:44–51. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Thiery JP and Sleeman JP: Complex networks
orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell
Biol. 7:131–142. 2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Lindsey S and Langhans SA: Crosstalk of
oncogenic signaling pathways during epithelial-mesenchymal
transition. Front Oncol. 4:3582014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Derycke LD and Bracke ME: N-cadherin in
the spotlight of cell-cell adhesion, differentiation,
embryogenesis, invasion and signalling. Int J Dev Biol. 48:463–476.
2004. View Article : Google Scholar : PubMed/NCBI
|
50
|
Gialeli C, Theocharis AD and Karamanos NK:
Roles of matrix metalloproteinases in cancer progression and their
pharmacological targeting. FEBS J. 278:16–27. 2011. View Article : Google Scholar : PubMed/NCBI
|
51
|
Urueña C, Mancipe J, Hernandez J,
Castañeda D, Pombo L, Gomez A, Asea A and Fiorentino S:
Gallotannin-rich Caesalpinia spinosa fraction decreases the primary
tumor and factors associated with poor prognosis in a murine breast
cancer model. BMC Complement. Altern Med. 13:742013.
|
52
|
Zhao T, Sun Q, del Rincon SV, Lovato A,
Marques M and Witcher M: Gallotannin imposes S phase arrest in
breast cancer cells and suppresses the growth of triple-negative
tumors in vivo. PLoS One. 9:e928532014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Al-Halabi R, Bou Chedid M, Abou Merhi R,
El-Hajj H, Zahr H, Schneider-Stock R, Bazarbachi A and
Gali-Muhtasib H: Gallotannin inhibits NFκB signaling and growth of
human colon cancer xenografts. Cancer Biol Ther. 12:59–68. 2011.
View Article : Google Scholar : PubMed/NCBI
|