1
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ng JS, Low JJ and Ilancheran A: Epithelial
ovarian cancer. Best practice & research. Clin Obstet Gynaecol.
26:337–345. 2012.
|
3
|
Jayson GC, Kohn EC, Kitchener HC and
Ledermann JA: Ovarian cancer. Lancet. 384:1376–1388. 2014.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Wen M, Ma X, Cheng H, Jiang W, Xu X, Zhang
Y, Zhang Y, Guo Z, Yu Y, Xu H, et al: Stk38 protein kinase
preferentially inhibits TLR9-activated inflammatory responses by
promoting MEKK2 ubiquitination in macrophages. Nat Commun.
6:71672015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lee MG, Jeong SI, Ko KP, Park SK, Ryu BK,
Kim IY, Kim JK and Chi SG: RASSF1A directly antagonizes RhoA
activity through the assembly of a smurf1-mediated destruction
complex to suppress tumorigenesis. Cancer Res. 76:1847–1859. 2016.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang W, Ren F, Wu Q, Jiang D, Li H, Peng
Z, Wang J and Shi H: MicroRNA-497 inhibition of ovarian cancer cell
migration and invasion through targeting of SMAD specific E3
ubiquitin protein ligase 1. Biochem Biophys Res Commun.
449:432–437. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yu L, Liu X, Cui K, Di Y, Xin L, Sun X,
Zhang W, Yang X, Wei M, Yao Z, et al: SND1 acts downstream of TGFβ1
and upstream of Smurf1 to promote breast cancer metastasis. Cancer
Res. 75:1275–1286. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Khammanivong A, Gopalakrishnan R and
Dickerson EB: SMURF1 silencing diminishes a CD44-high cancer stem
cell-like population in head and neck squamous cell carcinoma. Mol
Cancer. 13:2602014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Huang C, Rajfur Z, Yousefi N, Chen Z,
Jacobson K and Ginsberg MH: Talin phosphorylation by Cdk5 regulates
Smurf1-mediated talin head ubiquitylation and cell migration. Nat
Cell Biol. 11:624–630. 2009. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Liu C, Billadeau DD, Abdelhakim H, Leof E,
Kaibuchi K, Bernabeu C, Bloom GS, Yang L, Boardman L, Shah VH, et
al: IQGAP1 suppresses TβRII-mediated myofibroblastic activation and
metastatic growth in liver. J Clin Invest. 123:1138–1156. 2013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Kwon A, Lee HL, Woo KM, Ryoo HM and Baek
JH: SMURF1 plays a role in EGF-induced breast cancer cell migration
and invasion. Mol Cells. 36:548–555. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li X, Dai X, Wan L, Inuzuka H, Sun L and
North BJ: Smurf1 regulation of DAB2IP controls cell proliferation
and migration. Oncotarget. 7:26057–26069. 2016.PubMed/NCBI
|
13
|
Wang Z, Wang J, Li X, Xing L, Ding Y, Shi
P, Zhang Y, Guo S, Shu X and Shan B: Bortezomib prevents
oncogenesis and bone metastasis of prostate cancer by inhibiting
WWP1, Smurf1 and Smurf2. Int J Oncol. 45:1469–1478. 2014.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Kwei KA, Shain AH, Bair R, Montgomery K,
Karikari CA, van de Rijn M, Hidalgo M, Maitra A, Bashyam MD and
Pollack JR: SMURF1 amplification promotes invasiveness in
pancreatic cancer. PLoS One. 6:e239242011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Javadi S, Ganeshan DM, Qayyum A, Iyer RB
and Bhosale P: Ovarian cancer, the revised FIGO staging system, and
the role of imaging. AJR Am J Roentgenol. 206:1351–1360. 2016.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2-ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang J, Liang WJ, Min GT, Wang HP, Chen W
and Yao N: LTBP2 promotes the migration and invasion of gastric
cancer cells and predicts poor outcome of patients with gastric
cancer. Int J Oncol. 52:1886–1898. 2018.PubMed/NCBI
|
18
|
Chen J, Wang L, Matyunina LV, Hill CG and
McDonald JF: Overexpression of miR-429 induces
mesenchymal-to-epithelial transition (MET) in metastatic ovarian
cancer cells. Gynecol Oncol. 121:200–205. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Shaw TJ, Senterman MK, Dawson K, Crane CA
and Vanderhyden BC: Characterization of intraperitoneal,
orthotopic, and metastatic xenograft models of human ovarian
cancer. Mol Ther. 10:1032–1042. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kataoka K and Ogawa S: Variegated RHOA
mutations in human cancers. Exp Hematol. 44:1123–1129. 2016.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu Z, Chu S, Yao S, Li Y, Fan S, Sun X,
Su L and Liu X: CD74 interacts with CD44 and enhances tumorigenesis
and metastasis via RHOA-mediated cofilin phosphorylation in human
breast cancer cells. Oncotarget. 18:68303–68313. 2016.
|
22
|
David D, Nair SA and Pillai MR: Smurf E3
ubiquitin ligases at the cross roads of oncogenesis and tumor
suppression. Biochim Biophys Acta. 1835:119–128. 2013.PubMed/NCBI
|
23
|
Cao Y and Zhang L: A Smurf1 tale: function
and regulation of an ubiquitin ligase in multiple cellular
networks. Cell Mol Life Sci. 70:2305–2317. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gang X, Wang G and Huang H: Androgens
regulate SMAD ubiquitination regulatory factor-1 expression and
prostate cancer cell invasion. Prostate. 75:561–572. 2015.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Tao Y, Sun C, Zhang T and Song Y: SMURF1
promotes the proliferation, migration and invasion of gastric
cancer cells. Oncol Rep. 38:1806–1814. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Blangy A: Tensins are versatile regulators
of Rho GTPase signaling and cell adhesion. Biol Cell. 109:115–126.
2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chang HR, Nam S, Lee J, Kim JH, Jung HR,
Park HS, Park S, Ahn YZ, Huh I, Balch C, et al: Systematic approach
identifies RHOA as a potential biomarker therapeutic target for
Asian gastric cancer. Oncotarget. 7:81435–81451. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Li Y, Xu T, Zou H, Chen X, Sun D and Yang
M: Cell migration microfluidics for electrotaxis-based
heterogeneity study of lung cancer cells. Biosens Bioelectron.
89:837–845. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Semprucci E, Tocci P, Cianfrocca R,
Sestito R, Caprara V, Veglione M, Castro VD, Spadaro F, Ferrandina
G, Bagnato A, et al: Endothelin A receptor drives invadopodia
function and cell motility through the beta-arrestin/PDZ-RhoGEF
pathway in ovarian carcinoma. Oncogene. 35:3432–3442. 2016.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Paul NR, Allen JL, Chapman A,
Morlan-Mairal M, Zindy E, Jacquemet G, Fernandez del Ama L,
Ferizovic N, Green DM, Howe JD, et al: α5β1 integrin recycling
promotes Arp2/3-independent cancer cell invasion via the formin
FHOD3. J Cell Biol. 210:1013–1031. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tocci P, Caprara V, Cianfrocca R, Sestito
R, Di Castro V, Bagnato A and Rosanò L: Endothelin-1/endothelin A
receptor axis activates RhoA GTPase in epithelial ovarian cancer.
Life Sci. 159:49–54. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zandvakili I, Lin Y, Morris JC and Zheng
Y: Rho GTPases: Anti- or pro-neoplastic targets? Oncogene.
36:3213–3222. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jansen S, Gosens R, Wieland T and Schmidt
M: Paving the Rho in cancer metastasis: Rho GTPases and beyond.
Pharmacol Ther. 183:1–21. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Huang C: Roles of E3 ubiquitin ligases in
cell adhesion and migration. Cell Adh Migr. 4:10–18. 2010.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Yu Y, Suryo Rahmanto Y, Lee MH, Wu PH,
Phillip JM, Huang CH, Vitolo MI, Gaillard S, Martin SS, Wirtz D, et
al: Inhibition of ovarian tumor cell invasiveness by targeting SYK
in the tyrosine kinase signaling pathway. Oncogene. 37:3778–3789.
2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Dorayappan KD, Wanner R, Wallbillich JJ,
Saini U, Zingarelli R, Suarez AA, Cohn DE and Selvendiran K:
Hypoxia-induced exosomes contribute to a more aggressive and
chemoresistant ovarian cancer phenotype: A novel mechanism linking
STAT3/Rab proteins. Oncogene. 37:3806–3821. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Peng F, Zhong Y, Liu Y, Zhang Y, Xie Y, Lu
Y, Zhang X and Li D: SPARC suppresses lymph node metastasis by
regulating the expression of VEGFs in ovarian carcinoma. Int J
Oncol. 51:1920–1928. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Xie X, Yang M, Ding Y, Yu L and Chen J:
Formyl peptide receptor 2 expression predicts poor prognosis and
promotes invasion and metastasis in epithelial ovarian cancer.
Oncol Rep. 38:3297–3308. 2017.PubMed/NCBI
|
39
|
Park GB and Kim D: TLR5/7-mediated PI3K
activation triggers epithelial-mesenchymal transition of ovarian
cancer cells through WAVE3-dependent mesothelin or OCT4/SOX2
expression. Oncol Rep. 38:3167–3176. 2017. View Article : Google Scholar : PubMed/NCBI
|